Cargando…
Modified HEPES one-pot synthetic strategy for gold nanostars
Gold nanostars are being used more regularly in the biosensing field. Despite their useful attributes, there is still a need to optimize aspects of the synthesis and stability. The seedless, synthetic method comprising 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) is a facile, rapid met...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599785/ https://www.ncbi.nlm.nih.gov/pubmed/31312487 http://dx.doi.org/10.1098/rsos.190160 |
Sumario: | Gold nanostars are being used more regularly in the biosensing field. Despite their useful attributes, there is still a need to optimize aspects of the synthesis and stability. The seedless, synthetic method comprising 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) is a facile, rapid method; however, it produces heteromorphic nanostars. The modification of a HEPES method resulted in a silver-assisted, seedless gold nanostar synthesis method. The nanostars resulting from this method were monodispersed, multi-branched and approximately 37 ± 2 nm in diameter. It proved to be a repeatable method that produced homogeneous and robust nanostars. Once functionalized with polyvinylpyrrolidone 10 000, the new nanostars were observed to be stable in various environments such as salt, ionic strength and cell culture medium. In conclusion, the addition of the silver nitrate improved the morphology of the reported HEPES nanostars for the purpose of nanobiosensor development. |
---|