Cargando…
Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease
Digital medicine has the capacity to affect all aspects of medicine, including disease prediction, prevention, diagnosis, treatment, and post-treatment management. In the field of thyroidology, researchers are also investigating potential applications of digital technology for the thyroid disease. R...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Endocrine Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599900/ https://www.ncbi.nlm.nih.gov/pubmed/31257740 http://dx.doi.org/10.3803/EnM.2019.34.2.124 |
_version_ | 1783431009128153088 |
---|---|
author | Moon, Jae Hoon Steinhubl, Steven R. |
author_facet | Moon, Jae Hoon Steinhubl, Steven R. |
author_sort | Moon, Jae Hoon |
collection | PubMed |
description | Digital medicine has the capacity to affect all aspects of medicine, including disease prediction, prevention, diagnosis, treatment, and post-treatment management. In the field of thyroidology, researchers are also investigating potential applications of digital technology for the thyroid disease. Recent studies using artificial intelligence (AI)/machine learning (ML) have reported reasonable performance for the classification of thyroid nodules based on ultrasonographic (US) images. AI/ML-based methods have also shown good diagnostic accuracy for distinguishing between benign and malignant thyroid lesions based on cytopathologic findings. Assistance from AI/ML methods could overcome the limitations of conventional thyroid US and fine-needle aspiration cytology. A web-based database has been developed for thyroid cancer care. In addition to its role as a nationwide registry of thyroid cancer, it is expected to serve as a clinical platform to facilitate better thyroid cancer care and as a research platform providing comprehensive disease-specific big data. Evidence has been found that biosignal monitoring with wearable devices may predict thyroid dysfunction. This real-world thyroid function monitoring could aid in the management and early detection of thyroid dysfunction. In the thyroidology field, research involving the range of digital medicine technologies and their clinical applications is expected to be even more active in the future. |
format | Online Article Text |
id | pubmed-6599900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Korean Endocrine Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-65999002019-07-08 Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease Moon, Jae Hoon Steinhubl, Steven R. Endocrinol Metab (Seoul) Review Article Digital medicine has the capacity to affect all aspects of medicine, including disease prediction, prevention, diagnosis, treatment, and post-treatment management. In the field of thyroidology, researchers are also investigating potential applications of digital technology for the thyroid disease. Recent studies using artificial intelligence (AI)/machine learning (ML) have reported reasonable performance for the classification of thyroid nodules based on ultrasonographic (US) images. AI/ML-based methods have also shown good diagnostic accuracy for distinguishing between benign and malignant thyroid lesions based on cytopathologic findings. Assistance from AI/ML methods could overcome the limitations of conventional thyroid US and fine-needle aspiration cytology. A web-based database has been developed for thyroid cancer care. In addition to its role as a nationwide registry of thyroid cancer, it is expected to serve as a clinical platform to facilitate better thyroid cancer care and as a research platform providing comprehensive disease-specific big data. Evidence has been found that biosignal monitoring with wearable devices may predict thyroid dysfunction. This real-world thyroid function monitoring could aid in the management and early detection of thyroid dysfunction. In the thyroidology field, research involving the range of digital medicine technologies and their clinical applications is expected to be even more active in the future. Korean Endocrine Society 2019-06 2019-06-24 /pmc/articles/PMC6599900/ /pubmed/31257740 http://dx.doi.org/10.3803/EnM.2019.34.2.124 Text en Copyright © 2019 Korean Endocrine Society http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Moon, Jae Hoon Steinhubl, Steven R. Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease |
title | Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease |
title_full | Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease |
title_fullStr | Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease |
title_full_unstemmed | Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease |
title_short | Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease |
title_sort | digital medicine in thyroidology: a new era of managing thyroid disease |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599900/ https://www.ncbi.nlm.nih.gov/pubmed/31257740 http://dx.doi.org/10.3803/EnM.2019.34.2.124 |
work_keys_str_mv | AT moonjaehoon digitalmedicineinthyroidologyaneweraofmanagingthyroiddisease AT steinhublstevenr digitalmedicineinthyroidologyaneweraofmanagingthyroiddisease |