Cargando…

Assembly mechanisms of the bacterial cytoskeletal protein FilP

Despite low-sequence homology, the intermediate filament (IF)–like protein FilP from Streptomyces coelicolor displays structural and biochemical similarities to the metazoan nuclear IF lamin. FilP, like IF proteins, is composed of central coiled-coil domains interrupted by short linkers and flanked...

Descripción completa

Detalles Bibliográficos
Autores principales: Javadi, Ala, Söderholm, Niklas, Olofsson, Annelie, Flärdh, Klas, Sandblad, Linda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599971/
https://www.ncbi.nlm.nih.gov/pubmed/31243049
http://dx.doi.org/10.26508/lsa.201800290
Descripción
Sumario:Despite low-sequence homology, the intermediate filament (IF)–like protein FilP from Streptomyces coelicolor displays structural and biochemical similarities to the metazoan nuclear IF lamin. FilP, like IF proteins, is composed of central coiled-coil domains interrupted by short linkers and flanked by head and tail domains. FilP polymerizes into repetitive filament bundles with paracrystalline properties. However, the cations Na(+) and K(+) are found to induce the formation of a FilP hexagonal meshwork with the same 60-nm repetitive unit as the filaments. Studies of polymerization kinetics, in combination with EM techniques, enabled visualization of the basic building block—a transiently soluble rod-shaped FilP molecule—and its assembly into protofilaments and filament bundles. Cryoelectron tomography provided a 3D view of the FilP bundle structure and an original assembly model of an IF-like protein of prokaryotic origin, thereby enabling a comparison with the assembly of metazoan IF.