Cargando…
Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study
Determining how best to manage an infectious disease outbreak may be hindered by both epidemiological uncertainty (i.e. about epidemiological processes) and operational uncertainty (i.e. about the effectiveness of candidate interventions). However, these two uncertainties are rarely addressed concur...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599986/ https://www.ncbi.nlm.nih.gov/pubmed/31213182 http://dx.doi.org/10.1098/rspb.2019.0774 |
_version_ | 1783431026736889856 |
---|---|
author | Li, Shou-Li Ferrari, Matthew J. Bjørnstad, Ottar N. Runge, Michael C. Fonnesbeck, Christopher J. Tildesley, Michael J. Pannell, David Shea, Katriona |
author_facet | Li, Shou-Li Ferrari, Matthew J. Bjørnstad, Ottar N. Runge, Michael C. Fonnesbeck, Christopher J. Tildesley, Michael J. Pannell, David Shea, Katriona |
author_sort | Li, Shou-Li |
collection | PubMed |
description | Determining how best to manage an infectious disease outbreak may be hindered by both epidemiological uncertainty (i.e. about epidemiological processes) and operational uncertainty (i.e. about the effectiveness of candidate interventions). However, these two uncertainties are rarely addressed concurrently in epidemic studies. We present an approach to simultaneously address both sources of uncertainty, to elucidate which source most impedes decision-making. In the case of the 2014 West African Ebola outbreak, epidemiological uncertainty is represented by a large ensemble of published models. Operational uncertainty about three classes of interventions is assessed for a wide range of potential intervention effectiveness. We ranked each intervention by caseload reduction in each model, initially assuming an unlimited budget as a counterfactual. We then assessed the influence of three candidate cost functions relating intervention effectiveness and cost for different budget levels. The improvement in management outcomes to be gained by resolving uncertainty is generally high in this study; appropriate information gain could reduce expected caseload by more than 50%. The ranking of interventions is jointly determined by the underlying epidemiological process, the effectiveness of the interventions and the size of the budget. An epidemiologically effective intervention might not be optimal if its costs outweigh its epidemiological benefit. Under higher-budget conditions, resolution of epidemiological uncertainty is most valuable. When budgets are tight, however, operational and epidemiological uncertainty are equally important. Overall, our study demonstrates that significant reductions in caseload could result from a careful examination of both epidemiological and operational uncertainties within the same modelling structure. This approach can be applied to decision-making for the management of other diseases for which multiple models and multiple interventions are available. |
format | Online Article Text |
id | pubmed-6599986 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-65999862019-07-01 Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study Li, Shou-Li Ferrari, Matthew J. Bjørnstad, Ottar N. Runge, Michael C. Fonnesbeck, Christopher J. Tildesley, Michael J. Pannell, David Shea, Katriona Proc Biol Sci Ecology Determining how best to manage an infectious disease outbreak may be hindered by both epidemiological uncertainty (i.e. about epidemiological processes) and operational uncertainty (i.e. about the effectiveness of candidate interventions). However, these two uncertainties are rarely addressed concurrently in epidemic studies. We present an approach to simultaneously address both sources of uncertainty, to elucidate which source most impedes decision-making. In the case of the 2014 West African Ebola outbreak, epidemiological uncertainty is represented by a large ensemble of published models. Operational uncertainty about three classes of interventions is assessed for a wide range of potential intervention effectiveness. We ranked each intervention by caseload reduction in each model, initially assuming an unlimited budget as a counterfactual. We then assessed the influence of three candidate cost functions relating intervention effectiveness and cost for different budget levels. The improvement in management outcomes to be gained by resolving uncertainty is generally high in this study; appropriate information gain could reduce expected caseload by more than 50%. The ranking of interventions is jointly determined by the underlying epidemiological process, the effectiveness of the interventions and the size of the budget. An epidemiologically effective intervention might not be optimal if its costs outweigh its epidemiological benefit. Under higher-budget conditions, resolution of epidemiological uncertainty is most valuable. When budgets are tight, however, operational and epidemiological uncertainty are equally important. Overall, our study demonstrates that significant reductions in caseload could result from a careful examination of both epidemiological and operational uncertainties within the same modelling structure. This approach can be applied to decision-making for the management of other diseases for which multiple models and multiple interventions are available. The Royal Society 2019-06-26 2019-06-19 /pmc/articles/PMC6599986/ /pubmed/31213182 http://dx.doi.org/10.1098/rspb.2019.0774 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Ecology Li, Shou-Li Ferrari, Matthew J. Bjørnstad, Ottar N. Runge, Michael C. Fonnesbeck, Christopher J. Tildesley, Michael J. Pannell, David Shea, Katriona Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study |
title | Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study |
title_full | Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study |
title_fullStr | Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study |
title_full_unstemmed | Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study |
title_short | Concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: Ebola as a case study |
title_sort | concurrent assessment of epidemiological and operational uncertainties for optimal outbreak control: ebola as a case study |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599986/ https://www.ncbi.nlm.nih.gov/pubmed/31213182 http://dx.doi.org/10.1098/rspb.2019.0774 |
work_keys_str_mv | AT lishouli concurrentassessmentofepidemiologicalandoperationaluncertaintiesforoptimaloutbreakcontrolebolaasacasestudy AT ferrarimatthewj concurrentassessmentofepidemiologicalandoperationaluncertaintiesforoptimaloutbreakcontrolebolaasacasestudy AT bjørnstadottarn concurrentassessmentofepidemiologicalandoperationaluncertaintiesforoptimaloutbreakcontrolebolaasacasestudy AT rungemichaelc concurrentassessmentofepidemiologicalandoperationaluncertaintiesforoptimaloutbreakcontrolebolaasacasestudy AT fonnesbeckchristopherj concurrentassessmentofepidemiologicalandoperationaluncertaintiesforoptimaloutbreakcontrolebolaasacasestudy AT tildesleymichaelj concurrentassessmentofepidemiologicalandoperationaluncertaintiesforoptimaloutbreakcontrolebolaasacasestudy AT pannelldavid concurrentassessmentofepidemiologicalandoperationaluncertaintiesforoptimaloutbreakcontrolebolaasacasestudy AT sheakatriona concurrentassessmentofepidemiologicalandoperationaluncertaintiesforoptimaloutbreakcontrolebolaasacasestudy |