Cargando…
Bacterial pathogens under high-tension: Staphylococcus aureus adhesion to von Willebrand factor is activated by force
Attachment of Staphylococcus aureus to platelets and endothelial cells involves binding of bacterial cell surface protein A (SpA) to the large plasma glycoprotein von Willebrand factor (vWF). SpA-mediated bacterial adhesion to vWF is controlled by fluid shear stress, yet little is currently known ab...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shared Science Publishers OG
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600117/ https://www.ncbi.nlm.nih.gov/pubmed/31294044 http://dx.doi.org/10.15698/mic2019.07.684 |
Sumario: | Attachment of Staphylococcus aureus to platelets and endothelial cells involves binding of bacterial cell surface protein A (SpA) to the large plasma glycoprotein von Willebrand factor (vWF). SpA-mediated bacterial adhesion to vWF is controlled by fluid shear stress, yet little is currently known about the underlying molecular mechanism. In a recent publication, we showed that the SpA-vWF interaction is tightly regulated by mechanical force. By means of single-molecule pulling experiments, we found that the SpA-vWF bond is extremely strong, being able to resist forces which largely outperform the strength of typical receptor-ligand bonds. In line with flow experiments, strong adhesion is activated by mechanical tension. These results suggest that force induces conformational changes in the vWF molecule, from a globular to an extended state, leading to the exposure of cryptic binding sites to which SpA strongly binds. This force-sensitive mechanism may largely contribute to help S. aureus bacteria to resist shear stress of flowing blood during infection. |
---|