Cargando…

Simultaneous Profiling and Holistic Comparison of the Metabolomes among the Flower Buds of Panax ginseng, Panax quinquefolius, and Panax notoginseng by UHPLC/IM-QTOF-HDMS(E)-Based Metabolomics Analysis

The flower buds of three Panax species (PGF: flower bud of P. ginseng; PQF: flower bud of P. quinquefolius; PNF: flower bud of P. notoginseng), widely consumed as healthcare products, are easily confused particularly in the extracts or traditional Chinese medicine (TCM) formulae. We are aimed to dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Li, Zuo, Tiantian, Zhang, Chunxia, Li, Weiwei, Wang, Hongda, Hu, Ying, Wang, Xiaoyan, Qian, Yuexin, Yang, Wenzhi, Yu, Heshui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600391/
https://www.ncbi.nlm.nih.gov/pubmed/31212627
http://dx.doi.org/10.3390/molecules24112188
Descripción
Sumario:The flower buds of three Panax species (PGF: flower bud of P. ginseng; PQF: flower bud of P. quinquefolius; PNF: flower bud of P. notoginseng), widely consumed as healthcare products, are easily confused particularly in the extracts or traditional Chinese medicine (TCM) formulae. We are aimed to develop an untargeted metabolomics approach, by ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) to unveil the chemical markers diagnostic for the differentiation of PGF, PQF, and PNF. Key parameters affecting chromatographic separation and MS detection were optimized in sequence. Forty-two batches of flower bud samples were analyzed in negative high-definition MS(E) (HDMS(E); enabling three-dimensional separations). Efficient metabolomics data processing was performed by Progenesis QI (Waters, Milford, MA, USA), while pattern-recognition chemometrics was applied for species classification and potential markers discovery. Reference compounds comparison, analysis of both HDMS(E) and targeted MS/MS data, and retrieval of an in-house ginsenoside library, were simultaneously utilized for the identification of discovered potential markers. Satisfactory conditions for metabolite profiling were achieved on a BEH Shield RP18 column and Vion™ IMS-QTOF instrument (Waters; by setting the capillary voltage of 1.0 kV and the cone of voltage 20 V) within 37 min. A total of 32 components were identified as the potential markers, of which Rb3, Ra1, isomer of m-Rc/m-Rb2/m-Rb3, isomer of Ra1/Ra2, Rb1, and isomer of Ra3, were the most important for differentiating among PGF, PQF, and PNF. Conclusively, UHPLC/IM-QTOF-MS-based metabolomics is a powerful tool for the authentication of TCM at the metabolome level.