Cargando…
Modeling the Physical Properties of Gamma Alumina Catalyst Carrier Based on an Artificial Neural Network
Porous γ-alumina is widely used as a catalyst carrier due to its chemical properties. These properties are strongly correlated with the physical properties of the material, such as porosity, density, shrinkage, and surface area. This study presents a technique that is less time consuming than other...
Autores principales: | Majdi, Hasan Sh., Saud, Amir N., Saud, Safaa N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600710/ https://www.ncbi.nlm.nih.gov/pubmed/31146451 http://dx.doi.org/10.3390/ma12111752 |
Ejemplares similares
-
Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids
por: Zhao, Ningbo, et al.
Publicado: (2017) -
Fabricated Gamma-Alumina-Supported Zinc Ferrite Catalyst for Solvent-Free Aerobic Oxidation of Cyclic Ethers to Lactones
por: Abduh, Naaser A. Y., et al.
Publicado: (2023) -
Synthesis of Dimethyl Ether via CO(2) Hydrogenation:
Effect of the Drying Technique of Alumina on Properties and Performance
of Alumina-Supported Copper Catalysts
por: Niamnuy, Chalida, et al.
Publicado: (2020) -
Solid lipid nanoparticles, an effective carrier for classical antifungal drugs
por: Almawash, Saud
Publicado: (2023) -
On the Chemistry of Iron Oxide Supported on γ-Alumina
and Silica Catalysts
por: Mosallanejad, Sara, et al.
Publicado: (2018)