Cargando…
Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes. Putative factors enhancing maturatio...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600740/ https://www.ncbi.nlm.nih.gov/pubmed/31163704 http://dx.doi.org/10.3390/ma12111805 |
_version_ | 1783431177445572608 |
---|---|
author | Pekkanen-Mattila, Mari Häkli, Martta Pölönen, Risto-Pekka Mansikkala, Tuomas Junnila, Anni Talvitie, Elina Koivisto, Janne T Kellomäki, Minna Aalto-Setälä, Katriina |
author_facet | Pekkanen-Mattila, Mari Häkli, Martta Pölönen, Risto-Pekka Mansikkala, Tuomas Junnila, Anni Talvitie, Elina Koivisto, Janne T Kellomäki, Minna Aalto-Setälä, Katriina |
author_sort | Pekkanen-Mattila, Mari |
collection | PubMed |
description | Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes. Putative factors enhancing maturation include in vitro culture duration, culture surface topography, and mechanical, chemical, and electrical stimulation. Stem cell-derived cardiomyocytes are traditionally cultured on glass surfaces coated with extracellular matrix derivatives such as gelatin. hiPSC-CMs are flat and round and their sarcomeres are randomly distributed and unorganized. Morphology can be enhanced by culturing cells on surfaces providing topographical cues to the cells. In this study, a textile based-culturing method used to enhance the maturation status of hiPSC-CMs is presented. Gelatin-coated polyethylene terephthalate (PET)-based textiles were used as the culturing surface for hiPSC-CMs and the effects of the textiles on the maturation status of the hiPSC-CMs were assessed. The hiPSC-CMs were characterized by analyzing their morphology, sarcomere organization, expression of cardiac specific genes, and calcium handling. We show that the topographical cues improve the structure of the hiPSC-CMs in vitro. Human iPSC-CMs grown on PET textiles demonstrated improved structural properties such as rod-shape structure and increased sarcomere orientation. |
format | Online Article Text |
id | pubmed-6600740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66007402019-07-16 Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Pekkanen-Mattila, Mari Häkli, Martta Pölönen, Risto-Pekka Mansikkala, Tuomas Junnila, Anni Talvitie, Elina Koivisto, Janne T Kellomäki, Minna Aalto-Setälä, Katriina Materials (Basel) Article Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes. Putative factors enhancing maturation include in vitro culture duration, culture surface topography, and mechanical, chemical, and electrical stimulation. Stem cell-derived cardiomyocytes are traditionally cultured on glass surfaces coated with extracellular matrix derivatives such as gelatin. hiPSC-CMs are flat and round and their sarcomeres are randomly distributed and unorganized. Morphology can be enhanced by culturing cells on surfaces providing topographical cues to the cells. In this study, a textile based-culturing method used to enhance the maturation status of hiPSC-CMs is presented. Gelatin-coated polyethylene terephthalate (PET)-based textiles were used as the culturing surface for hiPSC-CMs and the effects of the textiles on the maturation status of the hiPSC-CMs were assessed. The hiPSC-CMs were characterized by analyzing their morphology, sarcomere organization, expression of cardiac specific genes, and calcium handling. We show that the topographical cues improve the structure of the hiPSC-CMs in vitro. Human iPSC-CMs grown on PET textiles demonstrated improved structural properties such as rod-shape structure and increased sarcomere orientation. MDPI 2019-06-03 /pmc/articles/PMC6600740/ /pubmed/31163704 http://dx.doi.org/10.3390/ma12111805 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pekkanen-Mattila, Mari Häkli, Martta Pölönen, Risto-Pekka Mansikkala, Tuomas Junnila, Anni Talvitie, Elina Koivisto, Janne T Kellomäki, Minna Aalto-Setälä, Katriina Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes |
title | Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes |
title_full | Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes |
title_fullStr | Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes |
title_full_unstemmed | Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes |
title_short | Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes |
title_sort | polyethylene terephthalate textiles enhance the structural maturation of human induced pluripotent stem cell-derived cardiomyocytes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600740/ https://www.ncbi.nlm.nih.gov/pubmed/31163704 http://dx.doi.org/10.3390/ma12111805 |
work_keys_str_mv | AT pekkanenmattilamari polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes AT haklimartta polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes AT polonenristopekka polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes AT mansikkalatuomas polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes AT junnilaanni polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes AT talvitieelina polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes AT koivistojannet polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes AT kellomakiminna polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes AT aaltosetalakatriina polyethyleneterephthalatetextilesenhancethestructuralmaturationofhumaninducedpluripotentstemcellderivedcardiomyocytes |