Cargando…

Deformation of the Internal Connection of Narrow Implants after Insertion in Dense Bone: An in Vitro Study

Implant connections must resist surgical and prosthetic procedures without deformation. This study evaluated the deformation of different internal connections (IC) of narrow dental implants (NDI) after their insertion in artificial dense bone. Thirty NDI, with different IC geometries, Group A (inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Delgado-Ruiz, Rafael, Silvente, Ana Nicolas, Romanos, Georgios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600966/
https://www.ncbi.nlm.nih.gov/pubmed/31174249
http://dx.doi.org/10.3390/ma12111833
Descripción
Sumario:Implant connections must resist surgical and prosthetic procedures without deformation. This study evaluated the deformation of different internal connections (IC) of narrow dental implants (NDI) after their insertion in artificial dense bone. Thirty NDI, with different IC geometries, Group A (internal hexagon), Group B (tri-channeled), and Group C (four-channeled), with the same length and similar narrow diameters, were inserted in type II density bone blocks. Drilling protocols for dense bone from each implant manufacturer were followed. The Insertion torque (IT), connection length, vertex angles, and wall deformations were analyzed before and after the insertion of the implants. ANOVA (Analysis of Variance) and Tukey post-test were used for statistical comparisons. IT values were higher for Group A, surface damage, and titanium particles were observed in the IC in all the groups. Angle deformations between 5 and 70 degrees were present in all the groups, and the walls of Group B connection were the most affected by deformations (p < 0.05). Within the limitations of this experiment, it can be concluded that narrow diameter implants will suffer deformation of the implant connection and will also experience surface damage and titanium particle release when inserted in type II bone density.