Cargando…
Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets
Machine learning continues to make strident advances in the prediction of desired properties concerning drug development. Problematically, the efficacy of machine learning in these arenas is reliant upon highly accurate and abundant data. These two limitations, high accuracy and abundance, are often...
Autores principales: | Kaiser, Thomas M., Burger, Pieter B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601015/ https://www.ncbi.nlm.nih.gov/pubmed/31167452 http://dx.doi.org/10.3390/molecules24112115 |
Ejemplares similares
-
Prediction of refractive error and its progression: a machine learning-based algorithm
por: Barraza-Bernal, Maria J, et al.
Publicado: (2023) -
Mitigating underreported error in food frequency questionnaire data using a supervised machine learning method and error adjustment algorithm
por: Popoola, Anjolaoluwa Ayomide, et al.
Publicado: (2023) -
Machine learning algorithms: popular algorithms for data science and machine learning
por: Bonaccorso, Giuseppe
Publicado: (2018) -
Contemporary Strategies and Barriers to Transplantation Tolerance
por: Ezekian, Brian, et al.
Publicado: (2018) -
Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm
por: Bayer, Immanuel, et al.
Publicado: (2013)