Cargando…
Machine Learning Models Combined with Virtual Screening and Molecular Docking to Predict Human Topoisomerase I Inhibitors
In this work, random forest (RF), support vector machine, k-nearest neighbor and C4.5 decision tree, were used to establish classification models for predicting whether an unknown molecule is an inhibitor of human topoisomerase I (Top1) protein. All these models have achieved satisfactory results, w...
Autores principales: | Li, Bingke, Kang, Xiaokang, Zhao, Dan, Zou, Yurong, Huang, Xudong, Wang, Jiexue, Zhang, Chenghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601036/ https://www.ncbi.nlm.nih.gov/pubmed/31167344 http://dx.doi.org/10.3390/molecules24112107 |
Ejemplares similares
-
Ligand-based Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Discovery of Potential Topoisomerase I Inhibitors
por: Pal, Sourav, et al.
Publicado: (2019) -
Discovery of DNA Topoisomerase I Inhibitors with Low-Cytotoxicity Based on Virtual Screening from Natural Products
por: Xin, Lan-Ting, et al.
Publicado: (2017) -
Novel DNA Topoisomerase IIα Inhibitors from Combined Ligand- and Structure-Based Virtual Screening
por: Drwal, Malgorzata N., et al.
Publicado: (2014) -
Discovery of novel bacterial topoisomerase I inhibitors by use of in silico docking and in vitro assays
por: Sandhaus, Shayna, et al.
Publicado: (2018) -
The Discovery of Aurora Kinase Inhibitor by Multi-Docking-Based Virtual Screening
por: Kim, Jun-Tae, et al.
Publicado: (2014)