Cargando…

Long non-coding RNA SNHG12 promotes proliferation and invasion of colorectal cancer cells by acting as a molecular sponge of microRNA-16

Long non-coding (lnc)RNA small nucleolar RNA host gene 12 (SNHG12) has an oncogenic role in various common human cancer types, including colorectal cancer (CRC). However, the detailed regulatory mechanisms of SNHG12 in CRC cells have remained largely elusive, and the investigation thereof was the pu...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yuehua, Zhou, Jingyu, Wang, Shalong, Song, Yuliang, Zhou, Jianping, Ren, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601377/
https://www.ncbi.nlm.nih.gov/pubmed/31316616
http://dx.doi.org/10.3892/etm.2019.7650
Descripción
Sumario:Long non-coding (lnc)RNA small nucleolar RNA host gene 12 (SNHG12) has an oncogenic role in various common human cancer types, including colorectal cancer (CRC). However, the detailed regulatory mechanisms of SNHG12 in CRC cells have remained largely elusive, and the investigation thereof was the purpose of the present study. Polymerase chain reaction analysis was performed to examine the expression of lncRNA and microRNA (miR). Cell Counting Kit-8 and Transwell assays were used to assess cell proliferation and invasion. A luciferase reporter assay was performed to confirm a predicted targeting association between lncRNA and miR. It was observed that SNHG12 was markedly upregulated in CRC tissues when compared with that in adjacent non-tumour tissues, and its high expression was associated with CRC progression, as well as poor prognosis of patients. In addition, the expression of SNHG12 was higher in CRC cell lines when compared with that in a normal intestinal epithelial cell line. Knockdown of SNHG12 significantly inhibited CRC cell proliferation and invasion, while ectopic overexpression of SNHG12 had the opposite effect. A Bioinformatics analysis predicted that SNHG12 and miR-16 have complementary binding sites, which was confirmed by a luciferase reporter gene assay. The expression levels of miR-16 were markedly decreased in CRC tissues and cell lines compared with those in normal tissues or cells, and were inversely correlated with the expression levels of SNHG12 in CRC tissues. Furthermore, silencing of miR-16 eliminated the suppressive effects of SNHG12 knockdown on CRC cell proliferation and invasion. In conclusion, the present study demonstrated that SNHG12 promotes CRC cell proliferation and invasion, at least in part, by acting as a molecular sponge of miR-16, suggesting that SNHG12 may be a promising therapeutic target for CRC.