Cargando…
TOXIFY: a deep learning approach to classify animal venom proteins
In the era of Next-Generation Sequencing and shotgun proteomics, the sequences of animal toxigenic proteins are being generated at rates exceeding the pace of traditional means for empirical toxicity verification. To facilitate the automation of toxin identification from protein sequences, we traine...
Autores principales: | Cole, T. Jeffrey, Brewer, Michael S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601600/ https://www.ncbi.nlm.nih.gov/pubmed/31293833 http://dx.doi.org/10.7717/peerj.7200 |
Ejemplares similares
-
A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
por: Tabares-Soto, Reinel, et al.
Publicado: (2020) -
Deep-learning convolutional neural networks with transfer learning accurately classify COVID-19 lung infection on portable chest radiographs
por: Kikkisetti, Shreeja, et al.
Publicado: (2020) -
FUSTr: a tool to find gene families under selection in transcriptomes
por: Cole, T. Jeffrey, et al.
Publicado: (2018) -
Caveats to Deep Learning Approaches to RNA Secondary Structure Prediction
por: Flamm , Christoph, et al.
Publicado: (2022) -
Including planocerid flatworms in the diet effectively toxifies the pufferfish, Takifugu niphobles
por: Itoi, Shiro, et al.
Publicado: (2018)