Cargando…
A feature agnostic approach for glaucoma detection in OCT volumes
Optical coherence tomography (OCT) based measurements of retinal layer thickness, such as the retinal nerve fibre layer (RNFL) and the ganglion cell with inner plexiform layer (GCIPL) are commonly employed for the diagnosis and monitoring of glaucoma. Previously, machine learning techniques have rel...
Autores principales: | Maetschke, Stefan, Antony, Bhavna, Ishikawa, Hiroshi, Wollstein, Gadi, Schuman, Joel, Garnavi, Rahil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602191/ https://www.ncbi.nlm.nih.gov/pubmed/31260494 http://dx.doi.org/10.1371/journal.pone.0219126 |
Ejemplares similares
-
Automated summarisation of SDOCT volumes using deep learning: Transfer learning vs de novo trained networks
por: Antony, Bhavna Josephine, et al.
Publicado: (2019) -
OCT for glaucoma diagnosis, screening and detection of glaucoma progression
por: Bussel, Igor I, et al.
Publicado: (2014) -
Can Glaucoma Suspect Data Help to Improve the Performance of Glaucoma Diagnosis?
por: Abbasi, Ashkan, et al.
Publicado: (2023) -
Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Pointwise Visual Field Sensitivity Estimation
por: Chen, Zhiqi, et al.
Publicado: (2023) -
A Problem of Proportions in OCT-Based Morphometry and a Proposed Solution
por: Sigal, Ian A., et al.
Publicado: (2016)