Cargando…
Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori
Our previous study demonstrated that predominant feeding inhibitory effects were found in the crude extracts of foregut and midgut of the silkworm Bombyx mori larvae. To address the entero-intestinal control crucial for the regulation of insect feeding behavior, the present study identified and func...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602202/ https://www.ncbi.nlm.nih.gov/pubmed/31260470 http://dx.doi.org/10.1371/journal.pone.0219050 |
_version_ | 1783431353222561792 |
---|---|
author | Matsumoto, Sumihiro Kutsuna, Natsumaro Daubnerová, Ivana Roller, Ladislav Žitňan, Dušan Nagasawa, Hiromichi Nagata, Shinji |
author_facet | Matsumoto, Sumihiro Kutsuna, Natsumaro Daubnerová, Ivana Roller, Ladislav Žitňan, Dušan Nagasawa, Hiromichi Nagata, Shinji |
author_sort | Matsumoto, Sumihiro |
collection | PubMed |
description | Our previous study demonstrated that predominant feeding inhibitory effects were found in the crude extracts of foregut and midgut of the silkworm Bombyx mori larvae. To address the entero-intestinal control crucial for the regulation of insect feeding behavior, the present study identified and functionally characterized feeding inhibitory peptides from the midgut of B. mori larvae. Purification and structural analyses revealed that the predominant inhibitory factors in the crude extracts were allatotropin (AT) and GSRYamide after its C-terminal sequence. In situ hybridization revealed that AT and GSRYamide were expressed in enteroendocrine cells in the posterior and anterior midgut, respectively. Receptor screening using Ca(2+)-imaging technique showed that the B. mori neuropeptide G protein-coupled receptor (BNGR)-A19 and -A22 acted as GSRYamide receptors and BNGR-A5 acted as an additional AT receptor. Expression analyses of these receptors and the results of the peristaltic motion assay indicated that these peptides participated in the regulation of intestinal contraction. Exposure of pharynx and ileum to AT and GSRYamide inhibited spontaneous contraction in ad libitum-fed larvae, while exposure of pharynx to GSRYamide did not inhibit contraction in non-fed larvae, indicating that the feeding state changed their sensitivity to inhibitory peptides. These different responses corresponded to different expression levels of their receptors in the pharynx. In addition, injection of AT and GSRYamide decreased esophageal contraction frequencies in the melamine-treated transparent larvae. These findings strongly suggest that these peptides exert feeding inhibitory effects by modulating intestinal contraction in response to their feeding state transition, eventually causing feeding termination. |
format | Online Article Text |
id | pubmed-6602202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-66022022019-07-12 Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori Matsumoto, Sumihiro Kutsuna, Natsumaro Daubnerová, Ivana Roller, Ladislav Žitňan, Dušan Nagasawa, Hiromichi Nagata, Shinji PLoS One Research Article Our previous study demonstrated that predominant feeding inhibitory effects were found in the crude extracts of foregut and midgut of the silkworm Bombyx mori larvae. To address the entero-intestinal control crucial for the regulation of insect feeding behavior, the present study identified and functionally characterized feeding inhibitory peptides from the midgut of B. mori larvae. Purification and structural analyses revealed that the predominant inhibitory factors in the crude extracts were allatotropin (AT) and GSRYamide after its C-terminal sequence. In situ hybridization revealed that AT and GSRYamide were expressed in enteroendocrine cells in the posterior and anterior midgut, respectively. Receptor screening using Ca(2+)-imaging technique showed that the B. mori neuropeptide G protein-coupled receptor (BNGR)-A19 and -A22 acted as GSRYamide receptors and BNGR-A5 acted as an additional AT receptor. Expression analyses of these receptors and the results of the peristaltic motion assay indicated that these peptides participated in the regulation of intestinal contraction. Exposure of pharynx and ileum to AT and GSRYamide inhibited spontaneous contraction in ad libitum-fed larvae, while exposure of pharynx to GSRYamide did not inhibit contraction in non-fed larvae, indicating that the feeding state changed their sensitivity to inhibitory peptides. These different responses corresponded to different expression levels of their receptors in the pharynx. In addition, injection of AT and GSRYamide decreased esophageal contraction frequencies in the melamine-treated transparent larvae. These findings strongly suggest that these peptides exert feeding inhibitory effects by modulating intestinal contraction in response to their feeding state transition, eventually causing feeding termination. Public Library of Science 2019-07-01 /pmc/articles/PMC6602202/ /pubmed/31260470 http://dx.doi.org/10.1371/journal.pone.0219050 Text en © 2019 Matsumoto et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Matsumoto, Sumihiro Kutsuna, Natsumaro Daubnerová, Ivana Roller, Ladislav Žitňan, Dušan Nagasawa, Hiromichi Nagata, Shinji Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori |
title | Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori |
title_full | Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori |
title_fullStr | Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori |
title_full_unstemmed | Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori |
title_short | Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori |
title_sort | enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm bombyx mori |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602202/ https://www.ncbi.nlm.nih.gov/pubmed/31260470 http://dx.doi.org/10.1371/journal.pone.0219050 |
work_keys_str_mv | AT matsumotosumihiro enteroendocrinepeptidesregulatefeedingbehaviorviacontrollingintestinalcontractionofthesilkwormbombyxmori AT kutsunanatsumaro enteroendocrinepeptidesregulatefeedingbehaviorviacontrollingintestinalcontractionofthesilkwormbombyxmori AT daubnerovaivana enteroendocrinepeptidesregulatefeedingbehaviorviacontrollingintestinalcontractionofthesilkwormbombyxmori AT rollerladislav enteroendocrinepeptidesregulatefeedingbehaviorviacontrollingintestinalcontractionofthesilkwormbombyxmori AT zitnandusan enteroendocrinepeptidesregulatefeedingbehaviorviacontrollingintestinalcontractionofthesilkwormbombyxmori AT nagasawahiromichi enteroendocrinepeptidesregulatefeedingbehaviorviacontrollingintestinalcontractionofthesilkwormbombyxmori AT nagatashinji enteroendocrinepeptidesregulatefeedingbehaviorviacontrollingintestinalcontractionofthesilkwormbombyxmori |