Cargando…

PrankWeb: a web server for ligand binding site prediction and visualization

PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for ligand binding site prediction. P2Rank is a template-free machine learning method based on the prediction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible prot...

Descripción completa

Detalles Bibliográficos
Autores principales: Jendele, Lukas, Krivak, Radoslav, Skoda, Petr, Novotny, Marian, Hoksza, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602436/
https://www.ncbi.nlm.nih.gov/pubmed/31114880
http://dx.doi.org/10.1093/nar/gkz424
_version_ 1783431376639361024
author Jendele, Lukas
Krivak, Radoslav
Skoda, Petr
Novotny, Marian
Hoksza, David
author_facet Jendele, Lukas
Krivak, Radoslav
Skoda, Petr
Novotny, Marian
Hoksza, David
author_sort Jendele, Lukas
collection PubMed
description PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for ligand binding site prediction. P2Rank is a template-free machine learning method based on the prediction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible protein surface. Points with a high ligandability score are then clustered to form the resulting ligand binding sites. In addition, PrankWeb provides a web interface enabling users to easily carry out the prediction and visually inspect the predicted binding sites via an integrated sequence-structure view. Moreover, PrankWeb can determine sequence conservation for the input molecule and use this in both the prediction and result visualization steps. Alongside its online visualization options, PrankWeb also offers the possibility of exporting the results as a PyMOL script for offline visualization. The web frontend communicates with the server side via a REST API. In high-throughput scenarios, therefore, users can utilize the server API directly, bypassing the need for a web-based frontend or installation of the P2Rank application. PrankWeb is available at http://prankweb.cz/, while the web application source code and the P2Rank method can be accessed at https://github.com/jendelel/PrankWebApp and https://github.com/rdk/p2rank, respectively.
format Online
Article
Text
id pubmed-6602436
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-66024362019-07-05 PrankWeb: a web server for ligand binding site prediction and visualization Jendele, Lukas Krivak, Radoslav Skoda, Petr Novotny, Marian Hoksza, David Nucleic Acids Res Web Server Issue PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for ligand binding site prediction. P2Rank is a template-free machine learning method based on the prediction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible protein surface. Points with a high ligandability score are then clustered to form the resulting ligand binding sites. In addition, PrankWeb provides a web interface enabling users to easily carry out the prediction and visually inspect the predicted binding sites via an integrated sequence-structure view. Moreover, PrankWeb can determine sequence conservation for the input molecule and use this in both the prediction and result visualization steps. Alongside its online visualization options, PrankWeb also offers the possibility of exporting the results as a PyMOL script for offline visualization. The web frontend communicates with the server side via a REST API. In high-throughput scenarios, therefore, users can utilize the server API directly, bypassing the need for a web-based frontend or installation of the P2Rank application. PrankWeb is available at http://prankweb.cz/, while the web application source code and the P2Rank method can be accessed at https://github.com/jendelel/PrankWebApp and https://github.com/rdk/p2rank, respectively. Oxford University Press 2019-07-02 2019-05-22 /pmc/articles/PMC6602436/ /pubmed/31114880 http://dx.doi.org/10.1093/nar/gkz424 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Web Server Issue
Jendele, Lukas
Krivak, Radoslav
Skoda, Petr
Novotny, Marian
Hoksza, David
PrankWeb: a web server for ligand binding site prediction and visualization
title PrankWeb: a web server for ligand binding site prediction and visualization
title_full PrankWeb: a web server for ligand binding site prediction and visualization
title_fullStr PrankWeb: a web server for ligand binding site prediction and visualization
title_full_unstemmed PrankWeb: a web server for ligand binding site prediction and visualization
title_short PrankWeb: a web server for ligand binding site prediction and visualization
title_sort prankweb: a web server for ligand binding site prediction and visualization
topic Web Server Issue
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602436/
https://www.ncbi.nlm.nih.gov/pubmed/31114880
http://dx.doi.org/10.1093/nar/gkz424
work_keys_str_mv AT jendelelukas prankwebawebserverforligandbindingsitepredictionandvisualization
AT krivakradoslav prankwebawebserverforligandbindingsitepredictionandvisualization
AT skodapetr prankwebawebserverforligandbindingsitepredictionandvisualization
AT novotnymarian prankwebawebserverforligandbindingsitepredictionandvisualization
AT hokszadavid prankwebawebserverforligandbindingsitepredictionandvisualization