Cargando…
NetGO: improving large-scale protein function prediction with massive network information
Automated function prediction (AFP) of proteins is of great significance in biology. AFP can be regarded as a problem of the large-scale multi-label classification where a protein can be associated with multiple gene ontology terms as its labels. Based on our GOLabeler—a state-of-the-art method for...
Autores principales: | You, Ronghui, Yao, Shuwei, Xiong, Yi, Huang, Xiaodi, Sun, Fengzhu, Mamitsuka, Hiroshi, Zhu, Shanfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602452/ https://www.ncbi.nlm.nih.gov/pubmed/31106361 http://dx.doi.org/10.1093/nar/gkz388 |
Ejemplares similares
-
NetGO 2.0: improving large-scale protein function prediction with massive sequence, text, domain, family and network information
por: Yao, Shuwei, et al.
Publicado: (2021) -
NetGO 3.0: Protein Language Model Improves Large-scale Functional Annotations
por: Wang, Shaojun, et al.
Publicado: (2023) -
DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
por: You, Ronghui, et al.
Publicado: (2021) -
agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update
por: Tian, Tian, et al.
Publicado: (2017) -
PrismNet: predicting protein–RNA interaction using in vivo RNA structural information
por: Xu, Yiran, et al.
Publicado: (2023)