Cargando…
QBiC-Pred: quantitative predictions of transcription factor binding changes due to sequence variants
Non-coding genetic variants/mutations can play functional roles in the cell by disrupting regulatory interactions between transcription factors (TFs) and their genomic target sites. For most human TFs, a myriad of DNA-binding models are available and could be used to predict the effects of DNA mutat...
Autores principales: | Martin, Vincentius, Zhao, Jingkang, Afek, Ariel, Mielko, Zachery, Gordân, Raluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602471/ https://www.ncbi.nlm.nih.gov/pubmed/31114870 http://dx.doi.org/10.1093/nar/gkz363 |
Ejemplares similares
-
FuzPred: a web server for the sequence-based prediction of the context-dependent binding modes of proteins
por: Hatos, Andras, et al.
Publicado: (2023) -
SAbPred: a structure-based antibody prediction server
por: Dunbar, James, et al.
Publicado: (2016) -
SuperCYPsPred—a web server for the prediction of cytochrome activity
por: Banerjee, Priyanka, et al.
Publicado: (2020) -
A birth cohort study in the Middle East: the Qatari birth cohort study (QBiC) phase I
por: Sadoun, Eman, et al.
Publicado: (2017) -
SuperPred 3.0: drug classification and target prediction—a machine learning approach
por: Gallo, Kathleen, et al.
Publicado: (2022)