Cargando…
AlloDriver: a method for the identification and analysis of cancer driver targets
Identifying the variants that alter protein function is a promising strategy for deciphering the biological consequences of somatic mutations during tumorigenesis, which could provide novel targets for the development of cancer therapies. Here, based on our previously developed method, we present a...
Autores principales: | Song, Kun, Li, Qian, Gao, Wei, Lu, Shaoyong, Shen, Qiancheng, Liu, Xinyi, Wu, Yongyan, Wang, Binquan, Lin, Houwen, Chen, Guoqiang, Zhang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602569/ https://www.ncbi.nlm.nih.gov/pubmed/31069394 http://dx.doi.org/10.1093/nar/gkz350 |
Ejemplares similares
-
DeepAlloDriver: a deep learning-based strategy to predict cancer driver mutations
por: Song, Qianqian, et al.
Publicado: (2023) -
AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses
por: Huang, Min, et al.
Publicado: (2018) -
AlloReverse: multiscale understanding among hierarchical allosteric regulations
por: Zha, Jinyin, et al.
Publicado: (2023) -
Cancer driver drug interaction explorer
por: Hartung, Michael, et al.
Publicado: (2022) -
AlloSigMA 2: paving the way to designing allosteric effectors and to exploring allosteric effects of mutations
por: Tan, Zhen Wah, et al.
Publicado: (2020)