Cargando…

Beam emittance preservation using Gaussian density ramps in a beam-driven plasma wakefield accelerator

A current challenge that is facing the plasma wakefield accelerator (PWFA) community is transverse beam emittance preservation. This can be achieved by balancing the natural divergence of the beam against the strong focusing force provided by the PWFA plasma source in a scheme referred to as beam ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Litos, M. D., Ariniello, R., Doss, C. E., Hunt-Stone, K., Cary, J. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602910/
https://www.ncbi.nlm.nih.gov/pubmed/31230570
http://dx.doi.org/10.1098/rsta.2018.0181
Descripción
Sumario:A current challenge that is facing the plasma wakefield accelerator (PWFA) community is transverse beam emittance preservation. This can be achieved by balancing the natural divergence of the beam against the strong focusing force provided by the PWFA plasma source in a scheme referred to as beam matching. One method to accomplish beam matching is through the gradual focusing of a beam with a plasma density ramp leading into the bulk plasma. Here, the beam dynamics in a Gaussian plasma density ramp are considered, and an empirical formula is identified that gives the ramp length and beam vacuum waist location needed to achieve near-perfect matching. The method uses only the beam vacuum waist beta function as an input. Numerical studies show that the Gaussian ramp focusing formula is robust for beta function demagnification factors spanning more than an order of magnitude with experimentally favourable tolerances for future PWFA research facilities. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.