Cargando…
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist’s toolset. The use of computer simulations requires a balance between cost and accuracy: quantum-mechanical methods provide high accuracy but are computationally expensive and scale poorly...
Autores principales: | Smith, Justin S., Nebgen, Benjamin T., Zubatyuk, Roman, Lubbers, Nicholas, Devereux, Christian, Barros, Kipton, Tretiak, Sergei, Isayev, Olexandr, Roitberg, Adrian E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602931/ https://www.ncbi.nlm.nih.gov/pubmed/31263102 http://dx.doi.org/10.1038/s41467-019-10827-4 |
Ejemplares similares
-
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
por: Smith, Justin S., et al.
Publicado: (2020) -
Teaching a neural network to attach and detach electrons from molecules
por: Zubatyuk, Roman, et al.
Publicado: (2021) -
Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network
por: Zubatyuk, Roman, et al.
Publicado: (2019) -
Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics
por: Zhou, Guoqing, et al.
Publicado: (2022) -
ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules
por: Smith, Justin S., et al.
Publicado: (2017)