Cargando…

Absence of photosynthetic state transitions in alien chloroplasts

MAIN CONCLUSION: The absence of state transitions in a Nt(Hn) cybrid is due to a cleavage of the threonine residue from the misprocessed N-terminus of the LHCII polypeptides. ABSTRACT: The cooperation between the nucleus and chloroplast genomes is essential for plant photosynthetic fitness. The rapi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeates, Anna M., Zubko, Mikhajlo K., Ruban, Alexander V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602992/
https://www.ncbi.nlm.nih.gov/pubmed/31134341
http://dx.doi.org/10.1007/s00425-019-03187-2
Descripción
Sumario:MAIN CONCLUSION: The absence of state transitions in a Nt(Hn) cybrid is due to a cleavage of the threonine residue from the misprocessed N-terminus of the LHCII polypeptides. ABSTRACT: The cooperation between the nucleus and chloroplast genomes is essential for plant photosynthetic fitness. The rapid and specific interactions between nucleus-encoded and chloroplast-encoded proteins are under intense investigation with potential for applications in agriculture and renewable energy technology. Here, we present a novel model for photosynthesis research in which alien henbane (Hyoscyamus niger) chloroplasts function on the nuclear background of a tobacco (Nicotiana tabacum). The result of this coupling is a cytoplasmic hybrid (cybrid) with inhibited state transitions—a mechanism responsible for balancing energy absorption between photosystems. Protein analysis showed differences in the LHCII composition of the cybrid plants. SDS-PAGE analysis revealed a novel banding pattern in the cybrids with at least one additional ‘LHCII’ band compared to the wild-type parental species. Proteomic work suggested that the N-terminus of at least some of the cybrid Lhcb proteins was missing. These findings provide a mechanistic explanation for the lack of state transitions—the N-terminal truncation of the Lhcb proteins in the cybrid included the threonine residue that is phosphorylated/dephosphorylated in order to trigger state transitions and therefore crucial energy balancing mechanism in plants. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00425-019-03187-2) contains supplementary material, which is available to authorized users.