Cargando…
Radiomics based likelihood functions for cancer diagnosis
Radiomic features based classifiers and neural networks have shown promising results in tumor classification. The classification performance can be further improved greatly by exploring and incorporating the discriminative features towards cancer into mathematical models. In this research work, we h...
Autores principales: | Shakir, Hina, Deng, Yiming, Rasheed, Haroon, Khan, Tariq Mairaj Rasool |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603029/ https://www.ncbi.nlm.nih.gov/pubmed/31263186 http://dx.doi.org/10.1038/s41598-019-45053-x |
Ejemplares similares
-
Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space
por: McGarry, Sean D., et al.
Publicado: (2019) -
Multiregional radiomic model for breast cancer diagnosis: value of ultrasound-based peritumoral and parenchymal radiomics
por: Guo, Suping, et al.
Publicado: (2023) -
Obtaining Reliable Likelihood Ratio Tests from Simulated Likelihood Functions
por: Andersen, Laura Mørch
Publicado: (2014) -
Radiomics in the diagnosis of glioblastoma
por: Kwiatkowska-Miernik, Agnieszka, et al.
Publicado: (2023) -
Diagnosis of Distant Metastasis of Lung Cancer: Based on Clinical and Radiomic Features
por: Zhou, Hongyu, et al.
Publicado: (2017)