Cargando…

MiR-505 suppressed the growth of hepatocellular carcinoma cells via targeting IGF-1R

Hepatocellular carcinoma (HCC) is one of the most common cancers globally. An increasing body of evidence has demonstrated the critical function of microRNAs (miRNAs) in the initiation and progression of human cancers. Here, we showed that miR-505 was down-regulated in HCC tissues and cell lines. Re...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Liang, Yao, Yongshan, Wang, Yang, Wang, Shengqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603277/
https://www.ncbi.nlm.nih.gov/pubmed/31160483
http://dx.doi.org/10.1042/BSR20182442
Descripción
Sumario:Hepatocellular carcinoma (HCC) is one of the most common cancers globally. An increasing body of evidence has demonstrated the critical function of microRNAs (miRNAs) in the initiation and progression of human cancers. Here, we showed that miR-505 was down-regulated in HCC tissues and cell lines. Reduced expression of miR-505 was significantly correlated with the worse prognosis of HCC patients. Overexpression of miR-505 suppressed the proliferation, colony formation and induced apoptosis of both HepG2 and Huh7 cells. Further mechanism study uncovered that miR-505 bound the 3′-untranslated region (3′-UTR) of the insulin growth factor receptor (IGF-1R) and inhibited the expression of IGF-1R in HCC cells. The down-regulation of IGF-1R by miR-505 further suppressed the phosphorylation of AKT at the amino acid S473. Consistently, the abundance of glucose transporter (GLUT) 1 (GLUT1) was reduced with the overexpression of miR-505. Down-regulation of GLUT1 by miR-505 consequently attenuated the glucose uptake, lactate production and ATP generation of HCC cells. Collectively, our results demonstrated the tumor suppressive function of miR-505 possibly via inhibiting the glycolysis of HCC cells. These findings suggested miR-505 as an interesting target for designing anti-cancer strategy in HCC.