Cargando…

Using data science to diagnose and characterize heterogeneity of Alzheimer's disease

INTRODUCTION: Despite the availability of age- and education-adjusted standardized scores for most neuropsychological tests, there is a lack of objective rules in how to interpret multiple concurrent neuropsychological test scores that characterize the heterogeneity of Alzheimer's disease. METH...

Descripción completa

Detalles Bibliográficos
Autores principales: Ang, Ting F.A., An, Ning, Ding, Huitong, Devine, Sherral, Auerbach, Sanford H., Massaro, Joseph, Joshi, Prajakta, Liu, Xue, Liu, Yulin, Mahon, Elizabeth, Au, Rhoda, Lin, Honghuang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603309/
https://www.ncbi.nlm.nih.gov/pubmed/31304232
http://dx.doi.org/10.1016/j.trci.2019.05.002
_version_ 1783431494690144256
author Ang, Ting F.A.
An, Ning
Ding, Huitong
Devine, Sherral
Auerbach, Sanford H.
Massaro, Joseph
Joshi, Prajakta
Liu, Xue
Liu, Yulin
Mahon, Elizabeth
Au, Rhoda
Lin, Honghuang
author_facet Ang, Ting F.A.
An, Ning
Ding, Huitong
Devine, Sherral
Auerbach, Sanford H.
Massaro, Joseph
Joshi, Prajakta
Liu, Xue
Liu, Yulin
Mahon, Elizabeth
Au, Rhoda
Lin, Honghuang
author_sort Ang, Ting F.A.
collection PubMed
description INTRODUCTION: Despite the availability of age- and education-adjusted standardized scores for most neuropsychological tests, there is a lack of objective rules in how to interpret multiple concurrent neuropsychological test scores that characterize the heterogeneity of Alzheimer's disease. METHODS: Using neuropsychological test scores of 2091 participants from the Framingham Heart Study, we devised an automated algorithm that follows general diagnostic criteria and explores the heterogeneity of Alzheimer's disease. RESULTS: We developed a series of stepwise diagnosis rules that evaluate information from multiple neuropsychological tests to produce an intuitive and objective Alzheimer's disease dementia diagnosis with more than 80% accuracy. DISCUSSION: A data-driven stepwise diagnosis system is useful for diagnosis of Alzheimer's disease from neuropsychological tests. It demonstrated better performance than the traditional dichotomization of individuals' performance into satisfactory and unsatisfactory outcomes, making it more reflective of dementia as a spectrum disorder. This algorithm can be applied to both within clinic and outside-of-clinic settings.
format Online
Article
Text
id pubmed-6603309
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-66033092019-07-12 Using data science to diagnose and characterize heterogeneity of Alzheimer's disease Ang, Ting F.A. An, Ning Ding, Huitong Devine, Sherral Auerbach, Sanford H. Massaro, Joseph Joshi, Prajakta Liu, Xue Liu, Yulin Mahon, Elizabeth Au, Rhoda Lin, Honghuang Alzheimers Dement (N Y) Featured Article INTRODUCTION: Despite the availability of age- and education-adjusted standardized scores for most neuropsychological tests, there is a lack of objective rules in how to interpret multiple concurrent neuropsychological test scores that characterize the heterogeneity of Alzheimer's disease. METHODS: Using neuropsychological test scores of 2091 participants from the Framingham Heart Study, we devised an automated algorithm that follows general diagnostic criteria and explores the heterogeneity of Alzheimer's disease. RESULTS: We developed a series of stepwise diagnosis rules that evaluate information from multiple neuropsychological tests to produce an intuitive and objective Alzheimer's disease dementia diagnosis with more than 80% accuracy. DISCUSSION: A data-driven stepwise diagnosis system is useful for diagnosis of Alzheimer's disease from neuropsychological tests. It demonstrated better performance than the traditional dichotomization of individuals' performance into satisfactory and unsatisfactory outcomes, making it more reflective of dementia as a spectrum disorder. This algorithm can be applied to both within clinic and outside-of-clinic settings. Elsevier 2019-06-27 /pmc/articles/PMC6603309/ /pubmed/31304232 http://dx.doi.org/10.1016/j.trci.2019.05.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Featured Article
Ang, Ting F.A.
An, Ning
Ding, Huitong
Devine, Sherral
Auerbach, Sanford H.
Massaro, Joseph
Joshi, Prajakta
Liu, Xue
Liu, Yulin
Mahon, Elizabeth
Au, Rhoda
Lin, Honghuang
Using data science to diagnose and characterize heterogeneity of Alzheimer's disease
title Using data science to diagnose and characterize heterogeneity of Alzheimer's disease
title_full Using data science to diagnose and characterize heterogeneity of Alzheimer's disease
title_fullStr Using data science to diagnose and characterize heterogeneity of Alzheimer's disease
title_full_unstemmed Using data science to diagnose and characterize heterogeneity of Alzheimer's disease
title_short Using data science to diagnose and characterize heterogeneity of Alzheimer's disease
title_sort using data science to diagnose and characterize heterogeneity of alzheimer's disease
topic Featured Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603309/
https://www.ncbi.nlm.nih.gov/pubmed/31304232
http://dx.doi.org/10.1016/j.trci.2019.05.002
work_keys_str_mv AT angtingfa usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT anning usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT dinghuitong usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT devinesherral usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT auerbachsanfordh usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT massarojoseph usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT joshiprajakta usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT liuxue usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT liuyulin usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT mahonelizabeth usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT aurhoda usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease
AT linhonghuang usingdatasciencetodiagnoseandcharacterizeheterogeneityofalzheimersdisease