Cargando…

Dual-Channel Reconstruction Network for Image Compressive Sensing

The existing compressive sensing (CS) reconstruction algorithms require enormous computation and reconstruction quality that is not satisfying. In this paper, we propose a novel Dual-Channel Reconstruction Network (DC-Net) module to build two CS reconstruction networks: the first one recovers an ima...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhongqiang, Gao, Dahua, Xie, Xuemei, Shi, Guangming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603530/
https://www.ncbi.nlm.nih.gov/pubmed/31167471
http://dx.doi.org/10.3390/s19112549
Descripción
Sumario:The existing compressive sensing (CS) reconstruction algorithms require enormous computation and reconstruction quality that is not satisfying. In this paper, we propose a novel Dual-Channel Reconstruction Network (DC-Net) module to build two CS reconstruction networks: the first one recovers an image from its traditional random under-sampling measurements (RDC-Net); the second one recovers an image from its CS measurements acquired by a fully connected measurement matrix (FDC-Net). Especially, the fully connected under-sampling method makes CS measurements represent original images more effectively. For the two proposed networks, we use a fully connected layer to recover a preliminary reconstructed image, which is a linear mapping from CS measurements to the preliminary reconstructed image. The DC-Net module is used to further improve the preliminary reconstructed image quality. In the DC-Net module, a residual block channel can improve reconstruction quality and dense block channel can expedite calculation, whose fusion can improve the reconstruction performance and reduce runtime simultaneously. Extensive experiments manifest that the two proposed networks outperform state-of-the-art CS reconstruction methods in PSNR and have excellent visual reconstruction effects.