Cargando…
Dual-Channel Reconstruction Network for Image Compressive Sensing
The existing compressive sensing (CS) reconstruction algorithms require enormous computation and reconstruction quality that is not satisfying. In this paper, we propose a novel Dual-Channel Reconstruction Network (DC-Net) module to build two CS reconstruction networks: the first one recovers an ima...
Autores principales: | Zhang, Zhongqiang, Gao, Dahua, Xie, Xuemei, Shi, Guangming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603530/ https://www.ncbi.nlm.nih.gov/pubmed/31167471 http://dx.doi.org/10.3390/s19112549 |
Ejemplares similares
-
Dual-Channel Switchable Metasurface Filters for Compact Spectral Imaging with Deep Compressive Reconstruction
por: Wang, Chang, et al.
Publicado: (2023) -
Extra Proximal-Gradient Network with Learned Regularization for Image Compressive Sensing Reconstruction
por: Zhang, Qingchao, et al.
Publicado: (2022) -
Reconstruction of enterprise debt networks based on compressed sensing
por: Liang, Kaihao, et al.
Publicado: (2023) -
Low Energy Consumption Compressed Spectrum Sensing Based on Channel Energy Reconstruction in Cognitive Radio Network
por: Fang, Yuan, et al.
Publicado: (2020) -
Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l(0) Norm
por: Zhang, Yongtian, et al.
Publicado: (2023)