Cargando…
Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L.
Monitoring plant nitrogen (N) in a timely way and accurately is critical for precision fertilization. The imaging technology based on visible light is relatively inexpensive and ubiquitous, and open-source analysis tools have proliferated. In this study, texture- and geometry-related phenotyping com...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603544/ https://www.ncbi.nlm.nih.gov/pubmed/31146350 http://dx.doi.org/10.3390/s19112448 |
_version_ | 1783431529552150528 |
---|---|
author | Xiong, Xin Zhang, Jingjin Guo, Doudou Chang, Liying Huang, Danfeng |
author_facet | Xiong, Xin Zhang, Jingjin Guo, Doudou Chang, Liying Huang, Danfeng |
author_sort | Xiong, Xin |
collection | PubMed |
description | Monitoring plant nitrogen (N) in a timely way and accurately is critical for precision fertilization. The imaging technology based on visible light is relatively inexpensive and ubiquitous, and open-source analysis tools have proliferated. In this study, texture- and geometry-related phenotyping combined with color properties were investigated for their potential use in evaluating N in pakchoi (Brassica campestris ssp. chinensis L.). Potted pakchoi treated with four levels of N were cultivated in a greenhouse. Their top-view images were acquired using a camera at six growth stages. The corresponding plant N concentration was determined destructively. The quantitative relationships between the nitrogen nutrition index (NNI) and the image-based phenotyping features were established using the following algorithms: random forest (RF), support vector regression (SVR), and neural network (NN). The results showed the full model based on the color, texture, and geometry-related features outperforms the model based on only the color-related feature in predicting the NNI. The RF full model exhibited the most robust performance in both the seedling and harvest stages, reaching prediction accuracies of 0.823 and 0.943, respectively. The high prediction accuracy of the model allows for a low-cost, non-destructive monitoring of N in the field of precision crop management. |
format | Online Article Text |
id | pubmed-6603544 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66035442019-07-19 Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. Xiong, Xin Zhang, Jingjin Guo, Doudou Chang, Liying Huang, Danfeng Sensors (Basel) Article Monitoring plant nitrogen (N) in a timely way and accurately is critical for precision fertilization. The imaging technology based on visible light is relatively inexpensive and ubiquitous, and open-source analysis tools have proliferated. In this study, texture- and geometry-related phenotyping combined with color properties were investigated for their potential use in evaluating N in pakchoi (Brassica campestris ssp. chinensis L.). Potted pakchoi treated with four levels of N were cultivated in a greenhouse. Their top-view images were acquired using a camera at six growth stages. The corresponding plant N concentration was determined destructively. The quantitative relationships between the nitrogen nutrition index (NNI) and the image-based phenotyping features were established using the following algorithms: random forest (RF), support vector regression (SVR), and neural network (NN). The results showed the full model based on the color, texture, and geometry-related features outperforms the model based on only the color-related feature in predicting the NNI. The RF full model exhibited the most robust performance in both the seedling and harvest stages, reaching prediction accuracies of 0.823 and 0.943, respectively. The high prediction accuracy of the model allows for a low-cost, non-destructive monitoring of N in the field of precision crop management. MDPI 2019-05-29 /pmc/articles/PMC6603544/ /pubmed/31146350 http://dx.doi.org/10.3390/s19112448 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xiong, Xin Zhang, Jingjin Guo, Doudou Chang, Liying Huang, Danfeng Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. |
title | Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. |
title_full | Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. |
title_fullStr | Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. |
title_full_unstemmed | Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. |
title_short | Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. |
title_sort | non-invasive sensing of nitrogen in plant using digital images and machine learning for brassica campestris ssp. chinensis l. |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603544/ https://www.ncbi.nlm.nih.gov/pubmed/31146350 http://dx.doi.org/10.3390/s19112448 |
work_keys_str_mv | AT xiongxin noninvasivesensingofnitrogeninplantusingdigitalimagesandmachinelearningforbrassicacampestrissspchinensisl AT zhangjingjin noninvasivesensingofnitrogeninplantusingdigitalimagesandmachinelearningforbrassicacampestrissspchinensisl AT guodoudou noninvasivesensingofnitrogeninplantusingdigitalimagesandmachinelearningforbrassicacampestrissspchinensisl AT changliying noninvasivesensingofnitrogeninplantusingdigitalimagesandmachinelearningforbrassicacampestrissspchinensisl AT huangdanfeng noninvasivesensingofnitrogeninplantusingdigitalimagesandmachinelearningforbrassicacampestrissspchinensisl |