Cargando…
A Deep Learning Approach for MIMO-NOMA Downlink Signal Detection
As a key candidate technique for fifth-generation (5G) mobile communication systems, non-orthogonal multiple access (NOMA) has attracted considerable attention in the field of wireless communication. Successive interference cancellation (SIC) is the main NOMA detection method applied at receivers fo...
Autores principales: | Lin, Chuan, Chang, Qing, Li, Xianxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603596/ https://www.ncbi.nlm.nih.gov/pubmed/31159505 http://dx.doi.org/10.3390/s19112526 |
Ejemplares similares
-
Exploiting Cooperative Downlink NOMA in D2D Communications
por: Rauniyar, Ashish, et al.
Publicado: (2023) -
Resource Allocation in Downlink VLC-NOMA Systems for Factory Automation Scenario
por: Ryu, Won-Jae, et al.
Publicado: (2022) -
Efficient Allocation for Downlink Multi-Channel NOMA Systems Considering Complex Constraints
por: Xu, Zhengjia, et al.
Publicado: (2021) -
On the Downlink Capacity of Cell-Free Massive MIMO with Constrained Fronthaul Capacity
por: Zhang, Peng, et al.
Publicado: (2020) -
Modeling of Downlink Interference in Massive MIMO 5G Macro-Cell †
por: Bechta, Kamil, et al.
Publicado: (2021)