Cargando…
Wireless Indoor Localization Using Convolutional Neural Network and Gaussian Process Regression
This paper presents a localization model employing convolutional neural network (CNN) and Gaussian process regression (GPR) based on Wi-Fi received signal strength indication (RSSI) fingerprinting data. In the proposed scheme, the CNN model is trained by a training dataset. The trained model adapts...
Autores principales: | Zhang, Guolong, Wang, Ping, Chen, Haibing, Zhang, Lan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603619/ https://www.ncbi.nlm.nih.gov/pubmed/31159314 http://dx.doi.org/10.3390/s19112508 |
Ejemplares similares
-
Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
por: Richter, Philipp, et al.
Publicado: (2015) -
Hybrid Wireless Fingerprint Indoor Localization Method Based on a Convolutional Neural Network
por: Liu, Zhenyu, et al.
Publicado: (2019) -
Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process
por: Chang, Qiang, et al.
Publicado: (2016) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Smartphone-Based Activity Recognition for Indoor Localization Using a Convolutional Neural Network †
por: Zhou, Baoding, et al.
Publicado: (2019)