Cargando…
Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance
With the launch of BDS-3 and Galileo new satellites, the BeiDou navigation satellite system (BDS) has developed from the regional to global system, and the Galileo constellation will consist of 26 satellites in space. Thus, BDS, GPS, GLONASS, and Galileo all have the capability of global positioning...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603695/ https://www.ncbi.nlm.nih.gov/pubmed/31159245 http://dx.doi.org/10.3390/s19112496 |
_version_ | 1783431564611289088 |
---|---|
author | Jiao, Guoqiang Song, Shuli Ge, Yulong Su, Ke Liu, Yangyang |
author_facet | Jiao, Guoqiang Song, Shuli Ge, Yulong Su, Ke Liu, Yangyang |
author_sort | Jiao, Guoqiang |
collection | PubMed |
description | With the launch of BDS-3 and Galileo new satellites, the BeiDou navigation satellite system (BDS) has developed from the regional to global system, and the Galileo constellation will consist of 26 satellites in space. Thus, BDS, GPS, GLONASS, and Galileo all have the capability of global positioning services. It is meaningful to evaluate the ability of global precise point positioning (PPP) of the GPS, BDS, GLONASS, and Galileo. This paper mainly contributes to the assessment of BDS-2, BDS-2/BDS-3, GPS, GLONASS, and Galileo PPP with the observations that were provided by the international Global Navigation Satellite System (GNSS) Monitoring and Assessment System (iGMAS). The Position Dilution of Precision (PDOP) value was utilized to research the global coverage of GPS, BDS-2, BDS-2/BDS-3, GLONASS, and Galileo. In particular, GPS-only, BDS-2-only, BDS-2/BDS-3, GLONASS-only, Galileo-only, and multi-GNSS combined PPP solutions were analyzed to verify the capacity of the PPP performances in terms of positioning accuracy, convergence time, and zenith troposphere delay (ZTD) accuracy. In view of PDOP, the current BDS and Galileo are capable of global coverage. The BDS-2/BDS-3 and Galileo PDOP values are fairly evenly distributed around the world similar to GPS and GLONASS. The root mean square (RMS) of positioning errors for static BDS-2/BDS-3 PPP and Galileo-only PPP are 10.7, 19.5, 20.4 mm, and 6.9, 18.6, 19.6 mm, respectively, in the geographic area of the selected station, which is the same level as GPS and GLONASS. It is worth mentioning that, by adding BDS-3 observations, the positioning accuracy of static BDS PPP is improved by 17.05%, 24.42%, and 35.65%, and the convergence time is reduced by 27.15%, 27.87%, and 35.76% in three coordinate components, respectively. Similar to the static positioning, GPS, BDS-2/BDS-3, GLONASS, and Galileo have the basically same kinematic positioning accuracy. Multi-GNSS PPP significantly improves the positioning performances in both static and kinematic positioning. In terms of ZTD accuracy, the difference between GPS, BDS-2/BDS-3, GLONASS, and Galileo is less than 1 mm, and the BDS-2/BDS-3 improves ZTD accuracy by 20.48% over the BDS-2. The assessment of GPS, BDS-2, BDS-2/BDS-3, GLONASS, Galileo, and multi-GNSS global PPP performance are shown to make comments for the development of multi-GNSS integration, global precise positioning, and the construction of iGMAS. |
format | Online Article Text |
id | pubmed-6603695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66036952019-07-17 Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance Jiao, Guoqiang Song, Shuli Ge, Yulong Su, Ke Liu, Yangyang Sensors (Basel) Article With the launch of BDS-3 and Galileo new satellites, the BeiDou navigation satellite system (BDS) has developed from the regional to global system, and the Galileo constellation will consist of 26 satellites in space. Thus, BDS, GPS, GLONASS, and Galileo all have the capability of global positioning services. It is meaningful to evaluate the ability of global precise point positioning (PPP) of the GPS, BDS, GLONASS, and Galileo. This paper mainly contributes to the assessment of BDS-2, BDS-2/BDS-3, GPS, GLONASS, and Galileo PPP with the observations that were provided by the international Global Navigation Satellite System (GNSS) Monitoring and Assessment System (iGMAS). The Position Dilution of Precision (PDOP) value was utilized to research the global coverage of GPS, BDS-2, BDS-2/BDS-3, GLONASS, and Galileo. In particular, GPS-only, BDS-2-only, BDS-2/BDS-3, GLONASS-only, Galileo-only, and multi-GNSS combined PPP solutions were analyzed to verify the capacity of the PPP performances in terms of positioning accuracy, convergence time, and zenith troposphere delay (ZTD) accuracy. In view of PDOP, the current BDS and Galileo are capable of global coverage. The BDS-2/BDS-3 and Galileo PDOP values are fairly evenly distributed around the world similar to GPS and GLONASS. The root mean square (RMS) of positioning errors for static BDS-2/BDS-3 PPP and Galileo-only PPP are 10.7, 19.5, 20.4 mm, and 6.9, 18.6, 19.6 mm, respectively, in the geographic area of the selected station, which is the same level as GPS and GLONASS. It is worth mentioning that, by adding BDS-3 observations, the positioning accuracy of static BDS PPP is improved by 17.05%, 24.42%, and 35.65%, and the convergence time is reduced by 27.15%, 27.87%, and 35.76% in three coordinate components, respectively. Similar to the static positioning, GPS, BDS-2/BDS-3, GLONASS, and Galileo have the basically same kinematic positioning accuracy. Multi-GNSS PPP significantly improves the positioning performances in both static and kinematic positioning. In terms of ZTD accuracy, the difference between GPS, BDS-2/BDS-3, GLONASS, and Galileo is less than 1 mm, and the BDS-2/BDS-3 improves ZTD accuracy by 20.48% over the BDS-2. The assessment of GPS, BDS-2, BDS-2/BDS-3, GLONASS, Galileo, and multi-GNSS global PPP performance are shown to make comments for the development of multi-GNSS integration, global precise positioning, and the construction of iGMAS. MDPI 2019-05-31 /pmc/articles/PMC6603695/ /pubmed/31159245 http://dx.doi.org/10.3390/s19112496 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jiao, Guoqiang Song, Shuli Ge, Yulong Su, Ke Liu, Yangyang Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance |
title | Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance |
title_full | Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance |
title_fullStr | Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance |
title_full_unstemmed | Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance |
title_short | Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance |
title_sort | assessment of beidou-3 and multi-gnss precise point positioning performance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603695/ https://www.ncbi.nlm.nih.gov/pubmed/31159245 http://dx.doi.org/10.3390/s19112496 |
work_keys_str_mv | AT jiaoguoqiang assessmentofbeidou3andmultignssprecisepointpositioningperformance AT songshuli assessmentofbeidou3andmultignssprecisepointpositioningperformance AT geyulong assessmentofbeidou3andmultignssprecisepointpositioningperformance AT suke assessmentofbeidou3andmultignssprecisepointpositioningperformance AT liuyangyang assessmentofbeidou3andmultignssprecisepointpositioningperformance |