Cargando…
Unsupervised Learning for Depth, Ego-Motion, and Optical Flow Estimation Using Coupled Consistency Conditions
Herein, we propose an unsupervised learning architecture under coupled consistency conditions to estimate the depth, ego-motion, and optical flow. Previously invented learning techniques in computer vision adopted a large amount of the ground truth dataset for network training. A ground truth datase...
Autores principales: | Mun, Ji-Hun, Jeon, Moongu, Lee, Byung-Geun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603746/ https://www.ncbi.nlm.nih.gov/pubmed/31146404 http://dx.doi.org/10.3390/s19112459 |
Ejemplares similares
-
Unsupervised Learning of Monocular Depth and Ego-Motion with Optical Flow Features and Multiple Constraints
por: Zhao, Baigan, et al.
Publicado: (2022) -
Unsupervised Monocular Depth and Camera Pose Estimation with Multiple Masks and Geometric Consistency Constraints
por: Zhang, Xudong, et al.
Publicado: (2023) -
Stereovision-Based Ego-Motion Estimation for Combine Harvesters
por: Chen, Haiwen, et al.
Publicado: (2022) -
Towards Accurate Ground Plane Normal Estimation from Ego-Motion
por: Zhang, Jiaxin, et al.
Publicado: (2022) -
Effect of expansive optic flow and lateral motion parallax on depth estimation with normal and artificially reduced acuity
por: Liu, Siyun, et al.
Publicado: (2023)