Cargando…
Semantic Segmentation with Transfer Learning for Off-Road Autonomous Driving
Since the state-of-the-art deep learning algorithms demand a large training dataset, which is often unavailable in some domains, the transfer of knowledge from one domain to another has been a trending technique in the computer vision field. However, this method may not be a straight-forward task co...
Autores principales: | Sharma, Suvash, Ball, John E., Tang, Bo, Carruth, Daniel W., Doude, Matthew, Islam, Muhammad Aminul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603788/ https://www.ncbi.nlm.nih.gov/pubmed/31174299 http://dx.doi.org/10.3390/s19112577 |
Ejemplares similares
-
Occlusion-Free Road Segmentation Leveraging Semantics for Autonomous Vehicles
por: Wang, Kewei, et al.
Publicado: (2019) -
SemanticDepth: Fusing Semantic Segmentation and Monocular Depth Estimation for Enabling Autonomous Driving in Roads without Lane Lines
por: Palafox, Pablo R., et al.
Publicado: (2019) -
Autonomous Driving Control Based on the Technique of Semantic Segmentation
por: Tsai, Jichiang, et al.
Publicado: (2023) -
Off-Road Detection Analysis for Autonomous Ground Vehicles: A Review
por: Islam, Fahmida, et al.
Publicado: (2022) -
Real-Time Semantic Segmentation with Dual Encoder and Self-Attention Mechanism for Autonomous Driving
por: Chang, Yu-Bang, et al.
Publicado: (2021)