Cargando…

CCAAT/enhancer binding protein delta (C/EBPδ) demonstrates a dichotomous role in tumour initiation and promotion of epithelial carcinoma

BACKGROUND: CCAAT/enhancer binding protein delta (C/EBPδ,CEBPD), a gene part of the highly conserved basic-leucine zipper (b-ZIP) domain of transcriptional factors, is downregulated in 65% of high grade serous carcinomas of the ovary (HGSC). Overexpression of C/EBPδ in different tumours, such as gli...

Descripción completa

Detalles Bibliográficos
Autores principales: Sowamber, Ramlogan, Chehade, Rania, Bitar, Mahmoud, Dodds, Leah V., Milea, Anca, Slomovitz, Brian, Shaw, Patricia A., George, Sophia H.L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603855/
https://www.ncbi.nlm.nih.gov/pubmed/31078521
http://dx.doi.org/10.1016/j.ebiom.2019.05.002
Descripción
Sumario:BACKGROUND: CCAAT/enhancer binding protein delta (C/EBPδ,CEBPD), a gene part of the highly conserved basic-leucine zipper (b-ZIP) domain of transcriptional factors, is downregulated in 65% of high grade serous carcinomas of the ovary (HGSC). Overexpression of C/EBPδ in different tumours, such as glioblastoma and breast cancer either promotes tumour progression or inhibits growth and has low expression in normal tissue until activated by cytotoxic stressors. METHODS: Higher overall expression of C/EBPδ in the luteal phase of the menstrual cycle prompted us to investigate the role of C/EBPδ in carcinogenesis. In vitro experiments were conducted in fallopian tube cell samples and cancer cell lines to investigate the role of C/EBPδ in proliferation, migration, and the epithelial to mesenchymal transition. FINDINGS: Expression of C/EBPδ induced premature cellular arrest and decreased soft agar colony formation. Loss of C/EBPδ in epithelial cancer cell lines did not have significant effects on proliferation, yet overexpression demonstrated downregulation of growth, similar to normal fallopian tube cells. C/EBPδ promoted a partial mesenchymal to epithelial (MET) phenotype by upregulating E-cadherin and downregulating Vimentin and N-cadherin in FTE cells and increased migratory activity, which suggests a regulatory role in the epithelial-mesenchymal plasticity of these cells. INTERPRETATION: Our findings suggest that C/EBPδ regulates the phenotype of normal fallopian tube cells by acting on downstream regulatory factors that are implicated in the development of ovarian serous carcinogenesis. FUND: This study was funded by the CDMRP Ovarian Cancer program (W81WH-0701-0371, W81XWH-18-1-0072), the Princess Margaret Cancer Centre Foundation, Foundation for Women's Cancer – The Belinda-Sue/Mary-Jane Walker Fund, Colleen's Dream Foundation and Sylvester Comprehensive Cancer Center.