Cargando…
Applying Deep Neural Networks and Ensemble Machine Learning Methods to Forecast Airborne Ambrosia Pollen
Allergies to airborne pollen are a significant issue affecting millions of Americans. Consequently, accurately predicting the daily concentration of airborne pollen is of significant public benefit in providing timely alerts. This study presents a method for the robust estimation of the concentratio...
Autores principales: | Zewdie, Gebreab K., Lary, David J., Levetin, Estelle, Garuma, Gemechu F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603941/ https://www.ncbi.nlm.nih.gov/pubmed/31167504 http://dx.doi.org/10.3390/ijerph16111992 |
Ejemplares similares
-
Using machine learning to estimate atmospheric Ambrosia pollen concentrations in Tulsa, OK
por: Liu, Xun, et al.
Publicado: (2017) -
Spatial and temporal variations in airborne Ambrosia pollen in Europe
por: Sikoparija, B., et al.
Publicado: (2016) -
The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe
por: de Weger, Letty A., et al.
Publicado: (2016) -
The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine
por: Kasprzyk, Idalia, et al.
Publicado: (2010) -
Cross-sensitization to Artemisia and Ambrosia pollen allergens in an area located outside of the current distribution range of Ambrosia
por: Grewling, Łukasz, et al.
Publicado: (2018)