Cargando…

ReactELISA method for quantifying methylglyoxal levels in plasma and cell cultures

Methylglyoxal (MG) is a toxic glycolytic by-product associated with increased levels of inflammation and oxidative stress and has been linked to ageing-related diseases, such as diabetes and Alzheimer's disease. As MG is a highly reactive dicarbonyl compound, forming both reversible and irrever...

Descripción completa

Detalles Bibliográficos
Autores principales: Kold-Christensen, Rasmus, Jensen, Karina Kragh, Smedegård-Holmquist, Emil, Sørensen, Lambert Kristiansen, Hansen, Jakob, Jørgensen, Karl Anker, Kristensen, Peter, Johannsen, Mogens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604041/
https://www.ncbi.nlm.nih.gov/pubmed/31254735
http://dx.doi.org/10.1016/j.redox.2019.101252
Descripción
Sumario:Methylglyoxal (MG) is a toxic glycolytic by-product associated with increased levels of inflammation and oxidative stress and has been linked to ageing-related diseases, such as diabetes and Alzheimer's disease. As MG is a highly reactive dicarbonyl compound, forming both reversible and irreversible adducts with a range of endogenous nucleophiles, measuring endogenous levels of MG are quite troublesome. Furthermore, as MG is a small metabolite it is not very immunogenic, excluding conventional ELISA for detection purposes, thus only more instrumentally demanding LC-MS/MS-based methods have demonstrated convincing quantitative data. In the present work we develop a novel bifunctional MG capture probe as well as a high specificity monoclonal antibody to finally setup a robust reaction-based ELISA (ReactELISA) method for detecting the highly reactive and low-level (nM) metabolite MG in human biological specimens. The assay is tested and validated against the current golden standard LC-MS/MS method in human blood plasma and cell-culture media. Furthermore, we demonstrate the assays ability to measure small perturbations of MG levels in growth media caused by a small molecule drug buthionine sulfoximine (BSO) of current clinical relevance. Finally, the assay is converted into a homogenous (no-wash) AlphaLISA version (ReactAlphaLISA), which offers the potential for operationally simple screening of further small molecules capable of perturbing cellular MG. Such compounds could be of relevance as probes to gain insight into MG metabolism as well as drug-leads to alleviate ageing-related diseases.