Cargando…
Superimposed Training Combined Approach for a Reduced Phase of Spectrum Sensing in Cognitive Radio
This paper presents an approach to exploit the superimposed training (ST)-based primary users’ (PUs) transmissions in the context of spectrum sensing for cognitive radio. In the low signal-to-noise ratio (SNR), the proposed scheme splits the spectrum sensing phase into two sample processing periods,...
Autores principales: | Lopez-Lopez, Lizeth, Cardenas-Juarez, Marco, Stevens-Navarro, Enrique, Pineda-Rico, Ulises, Arce, Armando, Orozco-Lugo, Aldo G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604072/ https://www.ncbi.nlm.nih.gov/pubmed/31141882 http://dx.doi.org/10.3390/s19112425 |
Ejemplares similares
-
Cooperative Multiband Spectrum Sensing Using Radio Environment Maps and Neural Networks
por: Molina-Tenorio, Yanqueleth, et al.
Publicado: (2023) -
Statistical properties of superimposed stationary spike trains
por: Deger, Moritz, et al.
Publicado: (2011) -
Spectrum Sensing Based on Hybrid Spectrum Handoff in Cognitive Radio Networks
por: Vaduganathan, Lakshminarayanan, et al.
Publicado: (2023) -
Cognitive radio networks optimization with spectrum sensing algorithms
por: Dhope, Tanuja S
Publicado: (2014) -
Federated Learning for 5G Radio Spectrum Sensing
por: Wasilewska, Małgorzata, et al.
Publicado: (2021)