Cargando…
A New Deep Learning Algorithm for SAR Scene Classification Based on Spatial Statistical Modeling and Features Re-Calibration
Synthetic Aperture Radar (SAR) scene classification is challenging but widely applied, in which deep learning can play a pivotal role because of its hierarchical feature learning ability. In the paper, we propose a new scene classification framework, named Feature Recalibration Network with Multi-sc...
Autores principales: | Chen, Lifu, Cui, Xianliang, Li, Zhenhong, Yuan, Zhihui, Xing, Jin, Xing, Xuemin, Jia, Zhiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604108/ https://www.ncbi.nlm.nih.gov/pubmed/31151259 http://dx.doi.org/10.3390/s19112479 |
Ejemplares similares
-
Phase Difference Measurement of Under-Sampled Sinusoidal Signals for InSAR System Phase Error Calibration
por: Yuan, Zhihui, et al.
Publicado: (2019) -
Bag of Visual Words Model with Deep Spatial Features for Geographical Scene Classification
por: Feng, Jiangfan, et al.
Publicado: (2017) -
Multi-Scale Spatial Concatenations of Local Features in Natural Scenes and Scene Classification
por: Zhu, Xiaoyuan, et al.
Publicado: (2013) -
Automatic Extraction of Water and Shadow from SAR Images Based on a Multi-Resolution Dense Encoder and Decoder Network
por: Zhang, Peng, et al.
Publicado: (2019) -
An Improved Time-Series Model Considering Rheological Parameters for Surface Deformation Monitoring of Soft Clay Subgrade †
por: Xing, Xuemin, et al.
Publicado: (2019)