Cargando…

Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling

BACKGROUND: Dysbiotic vaginal microbiota have been implicated as contributors to persistent HPV-mediated cervical carcinogenesis and genital inflammation with mechanisms unknown. Given that cancer is a metabolic disease, metabolic profiling of the cervicovaginal microenvironment has the potential to...

Descripción completa

Detalles Bibliográficos
Autores principales: Ilhan, Zehra Esra, Łaniewski, Paweł, Thomas, Natalie, Roe, Denise J., Chase, Dana M., Herbst-Kralovetz, Melissa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604110/
https://www.ncbi.nlm.nih.gov/pubmed/31027917
http://dx.doi.org/10.1016/j.ebiom.2019.04.028
_version_ 1783431645810917376
author Ilhan, Zehra Esra
Łaniewski, Paweł
Thomas, Natalie
Roe, Denise J.
Chase, Dana M.
Herbst-Kralovetz, Melissa M.
author_facet Ilhan, Zehra Esra
Łaniewski, Paweł
Thomas, Natalie
Roe, Denise J.
Chase, Dana M.
Herbst-Kralovetz, Melissa M.
author_sort Ilhan, Zehra Esra
collection PubMed
description BACKGROUND: Dysbiotic vaginal microbiota have been implicated as contributors to persistent HPV-mediated cervical carcinogenesis and genital inflammation with mechanisms unknown. Given that cancer is a metabolic disease, metabolic profiling of the cervicovaginal microenvironment has the potential to reveal the functional interplay between the host and microbes in HPV persistence and progression to cancer. METHODS: Our study design included HPV-negative/positive controls, women with low-grade and high-grade cervical dysplasia, or cervical cancer (n = 78). Metabolic fingerprints were profiled using liquid chromatography-mass spectrometry. Vaginal microbiota and genital inflammation were analysed using 16S rRNA gene sequencing and immunoassays, respectively. We used an integrative bioinformatic pipeline to reveal host and microbe contributions to the metabolome and to comprehensively assess the link between HPV, microbiota, inflammation and cervical disease. FINDINGS: Metabolic analysis yielded 475 metabolites with known identities. Unique metabolic fingerprints discriminated patient groups from healthy controls. Three-hydroxybutyrate, eicosenoate, and oleate/vaccenate discriminated (with excellent capacity) between cancer patients versus the healthy participants. Sphingolipids, plasmalogens, and linoleate positively correlated with genital inflammation. Non-Lactobacillus dominant communities, particularly in high-grade dysplasia, perturbed amino acid and nucleotide metabolisms. Adenosine and cytosine correlated positively with Lactobacillus abundance and negatively with genital inflammation. Glycochenodeoxycholate and carnitine metabolisms connected non-Lactobacillus dominance to genital inflammation. INTERPRETATION: Cervicovaginal metabolic profiles were driven by cancer followed by genital inflammation, HPV infection, and vaginal microbiota. This study provides evidence for metabolite-driven complex host-microbe interactions as hallmarks of cervical cancer with future translational potential. FUND: Flinn Foundation (#1974), Banner Foundation Obstetrics/Gynecology, and NIH NCI (P30-CA023074).
format Online
Article
Text
id pubmed-6604110
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-66041102019-07-12 Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling Ilhan, Zehra Esra Łaniewski, Paweł Thomas, Natalie Roe, Denise J. Chase, Dana M. Herbst-Kralovetz, Melissa M. EBioMedicine Research paper BACKGROUND: Dysbiotic vaginal microbiota have been implicated as contributors to persistent HPV-mediated cervical carcinogenesis and genital inflammation with mechanisms unknown. Given that cancer is a metabolic disease, metabolic profiling of the cervicovaginal microenvironment has the potential to reveal the functional interplay between the host and microbes in HPV persistence and progression to cancer. METHODS: Our study design included HPV-negative/positive controls, women with low-grade and high-grade cervical dysplasia, or cervical cancer (n = 78). Metabolic fingerprints were profiled using liquid chromatography-mass spectrometry. Vaginal microbiota and genital inflammation were analysed using 16S rRNA gene sequencing and immunoassays, respectively. We used an integrative bioinformatic pipeline to reveal host and microbe contributions to the metabolome and to comprehensively assess the link between HPV, microbiota, inflammation and cervical disease. FINDINGS: Metabolic analysis yielded 475 metabolites with known identities. Unique metabolic fingerprints discriminated patient groups from healthy controls. Three-hydroxybutyrate, eicosenoate, and oleate/vaccenate discriminated (with excellent capacity) between cancer patients versus the healthy participants. Sphingolipids, plasmalogens, and linoleate positively correlated with genital inflammation. Non-Lactobacillus dominant communities, particularly in high-grade dysplasia, perturbed amino acid and nucleotide metabolisms. Adenosine and cytosine correlated positively with Lactobacillus abundance and negatively with genital inflammation. Glycochenodeoxycholate and carnitine metabolisms connected non-Lactobacillus dominance to genital inflammation. INTERPRETATION: Cervicovaginal metabolic profiles were driven by cancer followed by genital inflammation, HPV infection, and vaginal microbiota. This study provides evidence for metabolite-driven complex host-microbe interactions as hallmarks of cervical cancer with future translational potential. FUND: Flinn Foundation (#1974), Banner Foundation Obstetrics/Gynecology, and NIH NCI (P30-CA023074). Elsevier 2019-04-24 /pmc/articles/PMC6604110/ /pubmed/31027917 http://dx.doi.org/10.1016/j.ebiom.2019.04.028 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research paper
Ilhan, Zehra Esra
Łaniewski, Paweł
Thomas, Natalie
Roe, Denise J.
Chase, Dana M.
Herbst-Kralovetz, Melissa M.
Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling
title Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling
title_full Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling
title_fullStr Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling
title_full_unstemmed Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling
title_short Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling
title_sort deciphering the complex interplay between microbiota, hpv, inflammation and cancer through cervicovaginal metabolic profiling
topic Research paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604110/
https://www.ncbi.nlm.nih.gov/pubmed/31027917
http://dx.doi.org/10.1016/j.ebiom.2019.04.028
work_keys_str_mv AT ilhanzehraesra decipheringthecomplexinterplaybetweenmicrobiotahpvinflammationandcancerthroughcervicovaginalmetabolicprofiling
AT łaniewskipaweł decipheringthecomplexinterplaybetweenmicrobiotahpvinflammationandcancerthroughcervicovaginalmetabolicprofiling
AT thomasnatalie decipheringthecomplexinterplaybetweenmicrobiotahpvinflammationandcancerthroughcervicovaginalmetabolicprofiling
AT roedenisej decipheringthecomplexinterplaybetweenmicrobiotahpvinflammationandcancerthroughcervicovaginalmetabolicprofiling
AT chasedanam decipheringthecomplexinterplaybetweenmicrobiotahpvinflammationandcancerthroughcervicovaginalmetabolicprofiling
AT herbstkralovetzmelissam decipheringthecomplexinterplaybetweenmicrobiotahpvinflammationandcancerthroughcervicovaginalmetabolicprofiling