Cargando…
Learning Domain-Independent Deep Representations by Mutual Information Minimization
Domain transfer learning aims to learn common data representations from a source domain and a target domain so that the source domain data can help the classification of the target domain. Conventional transfer representation learning imposes the distributions of source and target domain representat...
Autores principales: | Wang, Ke, Liu, Jiayong, Wang, Jing-Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604496/ https://www.ncbi.nlm.nih.gov/pubmed/31316558 http://dx.doi.org/10.1155/2019/9414539 |
Ejemplares similares
-
Learning Invariant Representations using Mutual Information Regularization
por: Tan, Justin
Publicado: (2019) -
Dissecting Deep Learning Networks—Visualizing Mutual Information
por: Fang, Hui, et al.
Publicado: (2018) -
Learning biological network using mutual information and conditional independence
por: Kim, Dong-Chul, et al.
Publicado: (2010) -
Mutual information and variants for protein domain-domain contact prediction
por: Gomes, Mireille, et al.
Publicado: (2012) -
Measuring Independence between Statistical Randomness Tests by Mutual Information
por: Karell-Albo, Jorge Augusto, et al.
Publicado: (2020)