Cargando…

A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition

Transmembrane proteins in the outer membrane of Gram-negative bacteria are almost exclusively β-barrels. They are inserted into the outer membrane by a conserved and essential protein complex called the BAM (for β-barrel assembly machinery). In this commentary, we summarize current research into the...

Descripción completa

Detalles Bibliográficos
Autores principales: Leo, Jack C., Linke, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIMS Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604945/
https://www.ncbi.nlm.nih.gov/pubmed/31294227
http://dx.doi.org/10.3934/microbiol.2018.3.455
Descripción
Sumario:Transmembrane proteins in the outer membrane of Gram-negative bacteria are almost exclusively β-barrels. They are inserted into the outer membrane by a conserved and essential protein complex called the BAM (for β-barrel assembly machinery). In this commentary, we summarize current research into the mechanism of this protein complex and how it relates to type V secretion. Type V secretion systems are autotransporters that all contain a β-barrel transmembrane domain inserted by BAM. In type Vc systems, this domain is a homotrimer. We argue that none of the current models are sufficient to explain BAM function particularly regarding type Vc secretion. We also find that current models based on the well-studied model system Escherichia coli mostly ignore the pronounced differences in BAM composition between different bacterial species. We propose a more holistic view on how all OMPs, including autotransporters, are incorporated into the lipid bilayer.