Cargando…

Social intolerance is a consequence, not a cause, of dispersal in spiders

From invertebrates to vertebrates, a wealth of species display transient sociality during their life cycle. Investigating the causes of dispersal in temporary associations is important to better understand population dynamics. It is also essential to identify possible mechanisms involved in the evol...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiara, Violette, Ramon Portugal, Felipe, Jeanson, Raphael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605646/
https://www.ncbi.nlm.nih.gov/pubmed/31265448
http://dx.doi.org/10.1371/journal.pbio.3000319
Descripción
Sumario:From invertebrates to vertebrates, a wealth of species display transient sociality during their life cycle. Investigating the causes of dispersal in temporary associations is important to better understand population dynamics. It is also essential to identify possible mechanisms involved in the evolutionary transition from transient to stable sociality, which has been documented repeatedly across taxa and typically requires the suppression of dispersal. In many animals, the onset of dispersal during ontogeny coincides with a sharp decline in social tolerance, but the causal relationship still remains poorly understood. Spiders offer relevant models to explore this question, because the adults of the vast majority of species (>48,000) are solitary and aggressive, but juveniles of most (if not all) species are gregarious and display amicable behaviors. We deployed a combination of behavioral, chemical, and modelling approaches in spiderlings of a solitary species to investigate the mechanisms controlling the developmental switch leading to the decline of social cohesion and the loss of tolerance. We show that maturation causes an increase in mobility that is sufficient to elicit dispersal without requiring any change in social behaviors. Our results further demonstrate that social isolation following dispersal triggers aggressiveness in altering the processing of conspecifics’ cues. We thus provide strong evidence that aggression is a consequence, not a cause, of dispersal in spiderlings. Overall, this study highlights the need of extended social interactions to preserve tolerance, which opens new perspectives for understanding the routes to permanent sociality.