Cargando…

In vivo magnetic resonance imaging of treatment-induced apoptosis

Imaging apoptosis could provide an early and specific means to monitor tumor responses to treatment. To date, despite numerous attempts to develop molecular imaging approaches, there is still no widely-accepted and reliable method for in vivo imaging of apoptosis. We hypothesized that the distinct c...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Xiaoyu, McKinley, Eliot T., Xie, Jingping, Li, Hua, Xu, Junzhong, Gore, John C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606573/
https://www.ncbi.nlm.nih.gov/pubmed/31266982
http://dx.doi.org/10.1038/s41598-019-45864-y
Descripción
Sumario:Imaging apoptosis could provide an early and specific means to monitor tumor responses to treatment. To date, despite numerous attempts to develop molecular imaging approaches, there is still no widely-accepted and reliable method for in vivo imaging of apoptosis. We hypothesized that the distinct cellular morphologic changes associated with treatment-induced apoptosis, such as cell shrinkage, cytoplasm condensation, and DNA fragmentation, can be detected by temporal diffusion spectroscopy imaging (TDSI). Cetuximab-induced apoptosis was assessed in vitro and in vivo with cetuximab-sensitive (DiFi) and insensitive (HCT-116) human colorectal cancer cell lines by TDSI. TDSI findings were complemented by flow cytometry and immunohistochemistry. Cell cycle analysis and flow cytometry detected apoptotic cell shrinkage in cetuximab-treated DiFi cells, and significant apoptosis was confirmed by histology. TDSI-derived parameters quantified key morphological changes including cell size decreases during apoptosis in responsive tumors that occurred earlier than gross tumor volume regression. TDSI provides a unique measurement of apoptosis by identifying cellular characteristics, particularly cell shrinkage. The method will assist in understanding the underlying biology of solid tumors and predict tumor response to therapies. TDSI is free of any exogenous agent or radiation, and hence is very suitable to be incorporated into clinical applications.