Cargando…
Adiposity Criteria in Assessing Increased Cardiometabolic Risk in Prepubertal Children
Objective: Adiposity induces the clustering of cardiometabolic risk factors, and pediatric adiposity is a better indicator for adulthood cardiometabolic diseases than pediatric metabolic syndrome. However, the observed prevalence of pediatric adiposity depends on the methods and cut-points used. The...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606693/ https://www.ncbi.nlm.nih.gov/pubmed/31293520 http://dx.doi.org/10.3389/fendo.2019.00410 |
Sumario: | Objective: Adiposity induces the clustering of cardiometabolic risk factors, and pediatric adiposity is a better indicator for adulthood cardiometabolic diseases than pediatric metabolic syndrome. However, the observed prevalence of pediatric adiposity depends on the methods and cut-points used. Therefore, we aimed to define diagnostic criteria for adiposity which enable more valid identification of prepubertal children at increased cardiometabolic risk. Methods: The participants were 470 prepubertal children (249 boys) aged 6–8 years. The measures of adiposity included body mass index—standard deviation score (BMI-SDS), waist-to-height ratio (WHtR) and body fat percentage (BF%) assessed by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). Criteria for adiposity were determined by increased cardiometabolic risk. Cardiometabolic risk factors which correlated with BF% assessed by DXA in the upper but not lower half of BF% (serum insulin and plasma high-density lipoprotein cholesterol, triglycerides, gamma-glutamyl transferase, high-sensitivity C-reactive protein and uric acid) were included in the cardiometabolic risk score (CMS). We computed receiver operating characteristics curves for the measures of adiposity using the ≥90th percentile of CMS as a measure of increased cardiometabolic risk, and local regression curves were graphed to demonstrate the associations of the measures of adiposity with CMS. Results: In girls, WHtR of 0.445 (area under curve 0.778, its 95% confidence interval 0.65–0.91, sensitivity and specificity 0.73) and BF% of 19.5% assessed by BIA (0.801, 0.70–0.90, 0.73) were the best overall criteria for increased cardiometabolic risk. In boys, BMI-SDS of 0.48 (0.833, 0.75–0.92, 0.76) was the best overall criterion for increased cardiometabolic risk. While local regression curves in girls showed that WHtR of 0.445 corresponds well to a point where CMS began to increase, in boys local regression curves suggest that CMS began to increase even at a lower level of BMI-SDS than 0.48. Moreover, the diagnostic ability of the measures of adiposity to exclude increased cardiometabolic risk was poorer than the ability to detect it. Conclusions: In general, the measures of adiposity have sufficient diagnostic accuracy to be utilized as the screening tool for increased cardiometabolic risk. The observed cut-points for adiposity were lower than the traditional cut-points for adiposity. |
---|