Cargando…
Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis
Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using t...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607027/ https://www.ncbi.nlm.nih.gov/pubmed/30731114 http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.034 |
_version_ | 1783432013126041600 |
---|---|
author | Antonucci, Salvatore Mulvey, John F. Burger, Nils Di Sante, Moises Hall, Andrew R. Hinchy, Elizabeth C. Caldwell, Stuart T. Gruszczyk, Anja V. Deshwal, Soni Hartley, Richard C. Kaludercic, Nina Murphy, Michael P. Di Lisa, Fabio Krieg, Thomas |
author_facet | Antonucci, Salvatore Mulvey, John F. Burger, Nils Di Sante, Moises Hall, Andrew R. Hinchy, Elizabeth C. Caldwell, Stuart T. Gruszczyk, Anja V. Deshwal, Soni Hartley, Richard C. Kaludercic, Nina Murphy, Michael P. Di Lisa, Fabio Krieg, Thomas |
author_sort | Antonucci, Salvatore |
collection | PubMed |
description | Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of intracellular [Ca(2+)] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are cardiotoxic. |
format | Online Article Text |
id | pubmed-6607027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-66070272019-07-15 Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis Antonucci, Salvatore Mulvey, John F. Burger, Nils Di Sante, Moises Hall, Andrew R. Hinchy, Elizabeth C. Caldwell, Stuart T. Gruszczyk, Anja V. Deshwal, Soni Hartley, Richard C. Kaludercic, Nina Murphy, Michael P. Di Lisa, Fabio Krieg, Thomas Free Radic Biol Med Article Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of intracellular [Ca(2+)] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are cardiotoxic. Elsevier Science 2019-04 /pmc/articles/PMC6607027/ /pubmed/30731114 http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.034 Text en © The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Antonucci, Salvatore Mulvey, John F. Burger, Nils Di Sante, Moises Hall, Andrew R. Hinchy, Elizabeth C. Caldwell, Stuart T. Gruszczyk, Anja V. Deshwal, Soni Hartley, Richard C. Kaludercic, Nina Murphy, Michael P. Di Lisa, Fabio Krieg, Thomas Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis |
title | Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis |
title_full | Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis |
title_fullStr | Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis |
title_full_unstemmed | Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis |
title_short | Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis |
title_sort | selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607027/ https://www.ncbi.nlm.nih.gov/pubmed/30731114 http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.034 |
work_keys_str_mv | AT antonuccisalvatore selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT mulveyjohnf selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT burgernils selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT disantemoises selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT hallandrewr selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT hinchyelizabethc selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT caldwellstuartt selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT gruszczykanjav selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT deshwalsoni selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT hartleyrichardc selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT kaludercicnina selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT murphymichaelp selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT dilisafabio selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis AT kriegthomas selectivemitochondrialsuperoxidegenerationinvivoiscardioprotectivethroughhormesis |