Cargando…
An Evaluation of Machine Learning Approaches for the Prediction of Essential Genes in Eukaryotes Using Protein Sequence-Derived Features()
The availability of whole-genome sequences and associated multi-omics data sets, combined with advances in gene knockout and knockdown methods, has enabled large-scale annotation and exploration of gene and protein functions in eukaryotes. Knowing which genes are essential for the survival of eukary...
Autores principales: | Campos, Tulio L., Korhonen, Pasi K., Gasser, Robin B., Young, Neil D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607062/ https://www.ncbi.nlm.nih.gov/pubmed/31312416 http://dx.doi.org/10.1016/j.csbj.2019.05.008 |
Ejemplares similares
-
Predicting gene essentiality in Caenorhabditis elegans by feature engineering and machine-learning
por: Campos, Tulio L., et al.
Publicado: (2020) -
Combined use of feature engineering and machine-learning to predict essential genes in Drosophila melanogaster
por: Campos, Tulio L, et al.
Publicado: (2020) -
Cross-Predicting Essential Genes between Two Model Eukaryotic Species Using Machine Learning
por: Campos, Tulio L., et al.
Publicado: (2021) -
Identification of G protein-coupled receptors in Schistosoma haematobium and S. mansoni by comparative genomics
por: Campos, Tulio D L, et al.
Publicado: (2014) -
OGEE v3: Online GEne Essentiality database with increased coverage of organisms and human cell lines
por: Gurumayum, Sanathoi, et al.
Publicado: (2020)