Cargando…
A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed us...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607182/ https://www.ncbi.nlm.nih.gov/pubmed/31565298 http://dx.doi.org/10.1002/gch2.201700095 |
_version_ | 1783432043224367104 |
---|---|
author | Chinello, Enrico Modestino, Miguel A. Coulot, Laurent Ackermann, Mathieu Gerlich, Florian Psaltis, Demetri Moser, Christophe |
author_facet | Chinello, Enrico Modestino, Miguel A. Coulot, Laurent Ackermann, Mathieu Gerlich, Florian Psaltis, Demetri Moser, Christophe |
author_sort | Chinello, Enrico |
collection | PubMed |
description | Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off‐grid solar‐powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection‐molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple‐junction solar cells provide the necessary potential (open‐circuit voltage, V (OC) = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar‐to‐chemical conversion efficiency (SCE). The device represents the proof‐of‐principle of a new generation stand‐alone chlorine production system for off‐grid utilization in remote and inaccessible locations. |
format | Online Article Text |
id | pubmed-6607182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66071822019-09-27 A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator Chinello, Enrico Modestino, Miguel A. Coulot, Laurent Ackermann, Mathieu Gerlich, Florian Psaltis, Demetri Moser, Christophe Glob Chall Full Papers Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off‐grid solar‐powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection‐molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple‐junction solar cells provide the necessary potential (open‐circuit voltage, V (OC) = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar‐to‐chemical conversion efficiency (SCE). The device represents the proof‐of‐principle of a new generation stand‐alone chlorine production system for off‐grid utilization in remote and inaccessible locations. John Wiley and Sons Inc. 2017-11-29 /pmc/articles/PMC6607182/ /pubmed/31565298 http://dx.doi.org/10.1002/gch2.201700095 Text en © 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Chinello, Enrico Modestino, Miguel A. Coulot, Laurent Ackermann, Mathieu Gerlich, Florian Psaltis, Demetri Moser, Christophe A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_full | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_fullStr | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_full_unstemmed | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_short | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_sort | 25.1% efficient stand‐alone solar chloralkali generator employing a microtracking solar concentrator |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607182/ https://www.ncbi.nlm.nih.gov/pubmed/31565298 http://dx.doi.org/10.1002/gch2.201700095 |
work_keys_str_mv | AT chinelloenrico a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT modestinomiguela a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT coulotlaurent a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT ackermannmathieu a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT gerlichflorian a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT psaltisdemetri a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT moserchristophe a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT chinelloenrico 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT modestinomiguela 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT coulotlaurent 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT ackermannmathieu 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT gerlichflorian 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT psaltisdemetri 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT moserchristophe 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator |