Cargando…

A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator

Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed us...

Descripción completa

Detalles Bibliográficos
Autores principales: Chinello, Enrico, Modestino, Miguel A., Coulot, Laurent, Ackermann, Mathieu, Gerlich, Florian, Psaltis, Demetri, Moser, Christophe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607182/
https://www.ncbi.nlm.nih.gov/pubmed/31565298
http://dx.doi.org/10.1002/gch2.201700095
_version_ 1783432043224367104
author Chinello, Enrico
Modestino, Miguel A.
Coulot, Laurent
Ackermann, Mathieu
Gerlich, Florian
Psaltis, Demetri
Moser, Christophe
author_facet Chinello, Enrico
Modestino, Miguel A.
Coulot, Laurent
Ackermann, Mathieu
Gerlich, Florian
Psaltis, Demetri
Moser, Christophe
author_sort Chinello, Enrico
collection PubMed
description Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off‐grid solar‐powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection‐molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple‐junction solar cells provide the necessary potential (open‐circuit voltage, V (OC) = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar‐to‐chemical conversion efficiency (SCE). The device represents the proof‐of‐principle of a new generation stand‐alone chlorine production system for off‐grid utilization in remote and inaccessible locations.
format Online
Article
Text
id pubmed-6607182
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-66071822019-09-27 A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator Chinello, Enrico Modestino, Miguel A. Coulot, Laurent Ackermann, Mathieu Gerlich, Florian Psaltis, Demetri Moser, Christophe Glob Chall Full Papers Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off‐grid solar‐powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection‐molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple‐junction solar cells provide the necessary potential (open‐circuit voltage, V (OC) = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar‐to‐chemical conversion efficiency (SCE). The device represents the proof‐of‐principle of a new generation stand‐alone chlorine production system for off‐grid utilization in remote and inaccessible locations. John Wiley and Sons Inc. 2017-11-29 /pmc/articles/PMC6607182/ /pubmed/31565298 http://dx.doi.org/10.1002/gch2.201700095 Text en © 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Chinello, Enrico
Modestino, Miguel A.
Coulot, Laurent
Ackermann, Mathieu
Gerlich, Florian
Psaltis, Demetri
Moser, Christophe
A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_full A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_fullStr A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_full_unstemmed A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_short A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_sort 25.1% efficient stand‐alone solar chloralkali generator employing a microtracking solar concentrator
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607182/
https://www.ncbi.nlm.nih.gov/pubmed/31565298
http://dx.doi.org/10.1002/gch2.201700095
work_keys_str_mv AT chinelloenrico a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT modestinomiguela a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT coulotlaurent a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT ackermannmathieu a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT gerlichflorian a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT psaltisdemetri a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT moserchristophe a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT chinelloenrico 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT modestinomiguela 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT coulotlaurent 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT ackermannmathieu 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT gerlichflorian 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT psaltisdemetri 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT moserchristophe 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator