Cargando…

Outdoor Measurement and Modeling of Perovskite Module Temperatures

Photovoltaic cells and modules are exposed to partially rapid changing environmental parameters that influence the device temperature. The evolution of the device temperature of a perovskite module of 225 cm(2) area is presented during a period of 25 days under central European conditions. The tempe...

Descripción completa

Detalles Bibliográficos
Autores principales: Gehlhaar, Robert, Merckx, Tamara, Qiu, Weiming, Aernouts, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607244/
https://www.ncbi.nlm.nih.gov/pubmed/31565338
http://dx.doi.org/10.1002/gch2.201800008
Descripción
Sumario:Photovoltaic cells and modules are exposed to partially rapid changing environmental parameters that influence the device temperature. The evolution of the device temperature of a perovskite module of 225 cm(2) area is presented during a period of 25 days under central European conditions. The temperature of the glass–glass packaged perovskite solar module is directly measured at the back contact by a thermocouple. The device is exposed to ambient temperatures from 3 to 34 °C up to solar irradiation levels exceeding 1300 W m(−2). The highest recorded module temperature is 61 °C under constant high irradiation levels. Under strong fluctuations of the global solar irradiance, temperature gradients of more than 3 K min(−1) with total changes of more than 20 K are measured. Based on the experimental data, a dynamic iterative model is developed for the module temperature evolution in dependence on ambient temperature and solar irradiation. Furthermore, specific thermal device properties that enable an extrapolation of the module response beyond the measured parameter space can be determined. With this set of parameters, it can be predicted that the temperature of the perovskite layer in thin‐film photovoltaic devices is exceeding 70 °C under realistic outdoor conditions. Additionally, perovskite module temperatures can be calculated in final applications.