Cargando…
De novo prediction of cell-type complexity in single-cell RNA-seq and tumor microenvironments
Recent single-cell transcriptomic studies revealed new insights into cell-type heterogeneities in cellular microenvironments unavailable from bulk studies. A significant drawback of currently available algorithms is the need to use empirical parameters or rely on indirect quality measures to estimat...
Autores principales: | Woo, Jun, Winterhoff, Boris J., Starr, Timothy K., Aliferis, Constantin, Wang, Jinhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607449/ https://www.ncbi.nlm.nih.gov/pubmed/31266885 http://dx.doi.org/10.26508/lsa.201900443 |
Ejemplares similares
-
De novo gene signature identification from single‐cell RNA‐seq with hierarchical Poisson factorization
por: Levitin, Hanna Mendes, et al.
Publicado: (2019) -
SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
por: Peng, Tao, et al.
Publicado: (2019) -
CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
por: Hashimshony, Tamar, et al.
Publicado: (2016) -
Evaluation of de novo transcriptome assemblies from RNA-Seq data
por: Li, Bo, et al.
Publicado: (2014) -
Decontamination of ambient RNA in single-cell RNA-seq with DecontX
por: Yang, Shiyi, et al.
Publicado: (2020)