Cargando…

On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies

Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Lieske, Julia, Cerv, Maximilian, Kreida, Stefan, Komadina, Dana, Fischer, Janine, Barthelmess, Miriam, Fischer, Pontus, Pakendorf, Tim, Yefanov, Oleksandr, Mariani, Valerio, Seine, Thomas, Ross, Breyan H., Crosas, Eva, Lorbeer, Olga, Burkhardt, Anja, Lane, Thomas J., Guenther, Sebastian, Bergtholdt, Julian, Schoen, Silvan, Törnroth-Horsefield, Susanna, Chapman, Henry N., Meents, Alke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608620/
https://www.ncbi.nlm.nih.gov/pubmed/31316815
http://dx.doi.org/10.1107/S2052252519007395
_version_ 1783432194978480128
author Lieske, Julia
Cerv, Maximilian
Kreida, Stefan
Komadina, Dana
Fischer, Janine
Barthelmess, Miriam
Fischer, Pontus
Pakendorf, Tim
Yefanov, Oleksandr
Mariani, Valerio
Seine, Thomas
Ross, Breyan H.
Crosas, Eva
Lorbeer, Olga
Burkhardt, Anja
Lane, Thomas J.
Guenther, Sebastian
Bergtholdt, Julian
Schoen, Silvan
Törnroth-Horsefield, Susanna
Chapman, Henry N.
Meents, Alke
author_facet Lieske, Julia
Cerv, Maximilian
Kreida, Stefan
Komadina, Dana
Fischer, Janine
Barthelmess, Miriam
Fischer, Pontus
Pakendorf, Tim
Yefanov, Oleksandr
Mariani, Valerio
Seine, Thomas
Ross, Breyan H.
Crosas, Eva
Lorbeer, Olga
Burkhardt, Anja
Lane, Thomas J.
Guenther, Sebastian
Bergtholdt, Julian
Schoen, Silvan
Törnroth-Horsefield, Susanna
Chapman, Henry N.
Meents, Alke
author_sort Lieske, Julia
collection PubMed
description Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, ‘naked’ crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.
format Online
Article
Text
id pubmed-6608620
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-66086202019-07-17 On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies Lieske, Julia Cerv, Maximilian Kreida, Stefan Komadina, Dana Fischer, Janine Barthelmess, Miriam Fischer, Pontus Pakendorf, Tim Yefanov, Oleksandr Mariani, Valerio Seine, Thomas Ross, Breyan H. Crosas, Eva Lorbeer, Olga Burkhardt, Anja Lane, Thomas J. Guenther, Sebastian Bergtholdt, Julian Schoen, Silvan Törnroth-Horsefield, Susanna Chapman, Henry N. Meents, Alke IUCrJ Research Papers Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, ‘naked’ crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds. International Union of Crystallography 2019-06-19 /pmc/articles/PMC6608620/ /pubmed/31316815 http://dx.doi.org/10.1107/S2052252519007395 Text en © Julia Lieske et al. 2019 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/
spellingShingle Research Papers
Lieske, Julia
Cerv, Maximilian
Kreida, Stefan
Komadina, Dana
Fischer, Janine
Barthelmess, Miriam
Fischer, Pontus
Pakendorf, Tim
Yefanov, Oleksandr
Mariani, Valerio
Seine, Thomas
Ross, Breyan H.
Crosas, Eva
Lorbeer, Olga
Burkhardt, Anja
Lane, Thomas J.
Guenther, Sebastian
Bergtholdt, Julian
Schoen, Silvan
Törnroth-Horsefield, Susanna
Chapman, Henry N.
Meents, Alke
On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies
title On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies
title_full On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies
title_fullStr On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies
title_full_unstemmed On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies
title_short On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies
title_sort on-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608620/
https://www.ncbi.nlm.nih.gov/pubmed/31316815
http://dx.doi.org/10.1107/S2052252519007395
work_keys_str_mv AT lieskejulia onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT cervmaximilian onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT kreidastefan onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT komadinadana onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT fischerjanine onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT barthelmessmiriam onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT fischerpontus onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT pakendorftim onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT yefanovoleksandr onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT marianivalerio onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT seinethomas onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT rossbreyanh onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT crosaseva onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT lorbeerolga onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT burkhardtanja onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT lanethomasj onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT guenthersebastian onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT bergtholdtjulian onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT schoensilvan onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT tornrothhorsefieldsusanna onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT chapmanhenryn onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies
AT meentsalke onchipcrystallizationforserialcrystallographyexperimentsandonchipligandbindingstudies